Answer:
Molar mass of vitamin K = 450.56\frac{g}{mol}[/tex]
Explanation:
The freezing point of camphor = 178.4 ⁰C
the Kf of camphor = 37.7°C/m
where : m = molality
the relation between freezing point depression and molality is
Depression in freezing point = Kf X molality
Where
Kf = cryoscopic constant of camphor
molality = moles of solute dissolved per kg of solvent.
putting values
2.69°C = 37.7°C/m X molality
molality = 0.0714 mol /kg

moles of vitamin K = 0.0714X0.025 = 0.00178 mol
we know that moles are related to mass and molar mass of a substance as:

For vitamin K the mass is given = 0.802 grams
therefore molar mass = 
Answer:
Answer is letter B
Explanation:
The first one is wrong because acids release H+, not bases.
The third one is wrong because the pH is exactly 7, not greater.
The last one is wrong because it is vague and does not fit a neutralization reaction.
Answer:
See explanation.
Explanation:
Hello there!
In this case, according to the described chemical reaction, we first write the corresponding equation to obtain:

Thus, we proceed as follows:
Part 1 of 3: here, since the molar mass of silver and copper (II) nitrate are 107.87 and 187.55 g/mol respectively, and the mole ratio of the former to the latter is 2:1, we can set up the following stoichiometric expression:

Part 2 of 3: here, the molar mass of copper is 63.55 g/mol and the mole ratio of silver to copper is 2:1, the mass of the former that was used to start the reaction was:

Part 3 of 3: here, the molar mass of silver nitrate is 169.87 g/mol and their mole ratio 2:2, thus, the mass of initial silver nitrate is:

Best regards!
Fold mountains<span> are </span>mountains<span> that form mainly by the effects of </span>folding<span> on layers within the upper part of the Earth's crust. Before either plate tectonic theory developed, or the internal architecture of thrust belts became well understood, the term was used for most</span>mountain<span> belts, such as the Himalayas.</span>