Answer:
B
Explanation:
Particles in a solid have fixed locations in a volume that does not change. Solids have a definite volume and shape because particles in a solid vibrate around fixed locations.
Answer:
a=28600J; b=90.6 J/K; c=402 torr
Explanation:
(a) considering the data given
Vapour pressure P1 =0 at Temperature T1 = 42.43˚C,
Vapour pressure P2 = 273.15 at Temperature T2= 315.58 K)
Using the Clausius-Clapeyron Equation
ln (P2/P1) = (ΔH/R)(1/T2 - 1/T1)
In 760/140 = ΔH/8.314 J/mol/K × (1/315.58K -- 1/273.15K)
ΔH vap= +28.6 kJ/mol or 28600J
(b) using the Equation ΔG°=ΔH° - TΔS to solve forΔS.
Since ΔG at boiling point is zero,
ΔS =(ΔH°vap/Τb)
ΔS = 28600 J/315.58 K
= 90.6 J/K
(c) using ln (P2/P1) = (ΔH/R)(1/T2 - 1/T1)
ln P298 K/1 atm = 28600 J/8.314 J/mol/K × (1/298.15K - 1/315.58K)
P298 K = 0.529 atm
= 402 torr
Answer:
85.34g of NH3
Explanation:
Step 1:
The balanced equation for the reaction. This is given below:
N2 + 3H2 —> 2NH3
Step 2:
Determination of the number of moles of NH3 produced by the reaction of 2.51 moles of N2. This is illustrated below:
From the balanced equation above,
1 mole of N2 reacted to produce 2 moles of NH3.
Therefore, 2.51 moles of N2 will react to produce = (2.51 x 2)/1 = 5.02 moles of NH3.
Therefore, 5.02 moles of NH3 is produced from the reaction.
Step 3:
Conversion of 5.02 moles of NH3 to grams. This is illustrated below:
Molar mass of NH3 = 14 + (3x1) = 17g/mol
Number of mole of NH3 = 5.02 moles
Mass of NH3 =..?
Mass = mole x molar Mass
Mass of NH3 = 5.02 x 17
Mass of NH3 = 85.34g
Therefore, 85.34g of NH3 is produced.
Answer:
the electron cloud model is the current model of atom