Check the picture below.
so the volume will simply be the area of the hexagonal face times the height.
![\textit{area of a regular polygon}\\\\ A=\cfrac{1}{4}ns^2\stackrel{\qquad degrees}{\cot\left( \frac{180}{n} \right)}~~ \begin{cases} n=\stackrel{number~of}{sides}\\ s=\stackrel{length~of}{side}\\[-0.5em] \hrulefill\\ n=6\\ s=12 \end{cases}\implies A=\cfrac{1}{4}(6)(12)^2\cot\left( \frac{180}{6} \right) \\\\\\ A=216\cot(30^o)\implies A=216\sqrt{3} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{area of the hexagon}}{(216\sqrt{3})}~~\stackrel{height}{(10)}\implies 2160\sqrt{3}~~\approx ~~3741.2~cm^3](https://tex.z-dn.net/?f=%5Ctextit%7Barea%20of%20a%20regular%20polygon%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7B1%7D%7B4%7Dns%5E2%5Cstackrel%7B%5Cqquad%20degrees%7D%7B%5Ccot%5Cleft%28%20%5Cfrac%7B180%7D%7Bn%7D%20%5Cright%29%7D~~%20%5Cbegin%7Bcases%7D%20n%3D%5Cstackrel%7Bnumber~of%7D%7Bsides%7D%5C%5C%20s%3D%5Cstackrel%7Blength~of%7D%7Bside%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20n%3D6%5C%5C%20s%3D12%20%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Ccfrac%7B1%7D%7B4%7D%286%29%2812%29%5E2%5Ccot%5Cleft%28%20%5Cfrac%7B180%7D%7B6%7D%20%5Cright%29%20%5C%5C%5C%5C%5C%5C%20A%3D216%5Ccot%2830%5Eo%29%5Cimplies%20A%3D216%5Csqrt%7B3%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Barea%20of%20the%20hexagon%7D%7D%7B%28216%5Csqrt%7B3%7D%29%7D~~%5Cstackrel%7Bheight%7D%7B%2810%29%7D%5Cimplies%202160%5Csqrt%7B3%7D~~%5Capprox%20~~3741.2~cm%5E3)
Answer:
Which graph could represent a constant balance in a bank account over time? A graph titled Daily Balance. The horizontal axis shows time (days), numbered 1 to 8, and the vertical axis shows Balance (dollars) numbered 5 to 40. The line begins at 35 dollars in 0 days and ends at 0 dollars in 7 days. A graph titled Daily Balance. The horizontal axis shows time (days), numbered 1 to 8, and the vertical axis shows Balance (dollars) numbered 5 to 40. The line begins at 0 dollars in 5 days and extends vertically to 40 dollars in 5 days. A graph titled Daily Balance. The horizontal axis shows time (days), numbered 1 to 8, and the vertical axis shows Balance (dollars) numbered 5 to 40. The line begins at 30 dollars in 0 days and ends at 30 dollars in 8 days. A graph titled Daily Balance. The horizontal axis shows time (days), numbered 1 to 8, and the vertical axis shows Balance (dollars) numbered 5 to 40. The line begins at 0 dollars in 0 days and ends at 40 dollars in 8 days.
Answer:
(5 t ) cubed = 5 cubed . t cubed = 125 t cubed applies the power of a product rule to simplify (5 t) cubed ⇒ 3rd answer
Step-by-step explanation:
Let us revise some rules of exponents
×
=
×÷
= 
= 
=
. 
To simplify 
∵ 5t means 5 × t
∵ Both of them are cubed
- Use the 4th rule above
∴
= 
∵ (5)³ = 5 × 5 × 5 = 125
∴
=
= 125 t³
(5 t ) cubed = 5 cubed . t cubed = 125 t cubed applies the power of a product rule to simplify (5 t) cubed
19-(-39)
19+39=58
is solution as
the two end points are 19 and -39 we should subtract then we get the distance between