Question 21
Let's complete the square
y = 3x^2 + 6x + 5
y-5 = 3x^2 + 6x
y - 5 = 3(x^2 + 2x)
y - 5 = 3(x^2 + 2x + 1 - 1)
y - 5 = 3(x^2+2x+1) - 3
y - 5 = 3(x+1)^2 - 3
y = 3(x+1)^2 - 3 + 5
y = 3(x+1)^2 + 2
Answer: Choice D
============================================
Question 22
Through trial and error you should find that choice D is the answer
Basically you plug in each of the given answer choices and see which results in a true statement.
For instance, with choice A we have
y < -4(x+1)^2 - 3
-7 < -4(0+1)^2 - 3
-7 < -7
which is false, so we eliminate choice A
Choice D is the answer because
y < -4(x+1)^2 - 3
-9 < -4(-2+1)^2 - 3
-9 < -7
which is true since -9 is to the left of -7 on the number line.
============================================
Question 25
Answer: Choice B
Explanation:
The quantity (x-4)^2 is always positive regardless of what you pick for x. This is because we are squaring the (x-4). Squaring a negative leads to a positive. Eg: (-4)^2 = 16
Adding on a positive to (x-4)^2 makes the result even more positive. Therefore (x-4)^2 + 1 > 0 is true for any real number x.
Visually this means all solutions of y > (x-4)^2 + 1 reside in quadrants 1 and 2, which are above the x axis.
The square root of negative 100 can be dissected step by step. The square root of 100 is 10 however there is no such thing as square root of something negative, thus the imaginary notion is applied. square root of -1 is equal to i .Hence the answer to this problem is 10 i.
139 is suppose to be 140 and 18 is suppose to be 20, 140 x 20 = 2800
Home this works
Answer:
1.01 or 1.0
Step-by-step explanation: