The infinite sequence $T=\{t_0,t_1,t_2,\ldots\}$ is defined as $t_0=0,$ $t_1=1,$ and $t_n=t_{n-2}+t_{n-1}$ for all integers $n&g
t;1.$ If $a,$ $b,$ $c$ are fixed non-negative integers such that\begin{align*} a&\equiv 5\pmod {16}\\ b&\equiv 10\pmod {16}\\ c&\equiv 15\pmod {16}, \end{align*}then what is the remainder when $t_a+t_b+t_c$ is divided by $7?$ You can use a LaTeX renderer to see what this says.
Step-by-step explanation: As mentioned in the question, two parallel lines PQ and RS are drawn in the attached figure. The transversal CD cut the lines PQ and RS at the points X and Y respectively.
We are given four angles, out of which one should be chosen which is congruent to ∠CXP.
The angles lying on opposite sides of the transversal and outside the two parallel lines are called alternate exterior angles.
For example, in the figure attached, ∠CXP, ∠SYD and ∠CXQ, ∠RYD are pairs of alternate exterior angles.
Now, the theorem of alternate exterior angles states that if the two lines are parallel having a transversal, then alternate exterior angles are congruent to each other.