Answer:
Scientists believe that fitness is not only the ability to have physical fitness but it also refers to the adaptations that make an organism survive in its environment.
According to biological studies, biologists believe that the ability of an organism to survive in a particular area and to pass on its characteristics to its offspring is fitness.
The health scientists define fitness as the ability of an individual to be physically fit and to move without pain.
The scientists which study psychology believe that fitness is the well functioning of a person;s body as well as his/her mind.
The correct answers are:
- Methylation of histone tails in chromatin can promote condensation of the chromatin.
- DNA is not transcribed when chromatin is packaged tightly in a condensed form.
- Acetylation of histone tails is a reversible process.
- Some forms of chromatin modification can be passed on to future generations of cells.
- Acetylation of histone tails in chromatin allows access to DNA for transcription.
Histone modifications are post-translational modifications of histone protein that can affect gene expression by altering chromatin structure or recruiting histone modifiers.The most common modifications are methylation, phosphorylation, acetylation and ubiquitylation. All of them affect the binding affinity between histones and DNA and thus loosening (gene activation) or tightening (gene repression) the condensed DNA.
Histone methylation is a transfer of methyl group by histone methyltransferases to lysine or arginine amino acid of protein. Effect of methylation depends on the type of protein that is modified. Demethylation is the reverse process.
Histone acetylation is the process of adding of an acetyl group(by histone acetyltransferases) to histone proteins and it can also activate or inhibit the gene expression. Deacetilation is reverse process.
Scientists classify living things in order to organize and make sense of the incredible diversity of life. Modern scientists base their classifications mainly on molecular similarities. They group together organisms that have similar proteins and DNA.
hope this helps
Answer:
Until recently, most neuroscientists thought we were born with all the neurons we were ever going to have. As children we might produce some new neurons to help build the pathways - called neural circuits - that act as information highways between different areas of the brain. But scientists believed that once a neural circuit was in place, adding any new neurons would disrupt the flow of information and disable the brain’s communication system.
In 1962, scientist Joseph Altman challenged this belief when he saw evidence of neurogenesis (the birth of neurons) in a region of the adult rat brain called the hippocampus. He later reported that newborn neurons migrated from their birthplace in the hippocampus to other parts of the brain. In 1979, another scientist, Michael Kaplan, confirmed Altman’s findings in the rat brain, and in 1983 he found neural precursor cells in the forebrain of an adult monkey.
These discoveries about neurogenesis in the adult brain were surprising to other researchers who didn’t think they could be true in humans. But in the early 1980s, a scientist trying to understand how birds learn to sing suggested that neuroscientists look again at neurogenesis in the adult brain and begin to see how it might make sense. In a series of experiments, Fernando Nottebohm and his research team showed that the numbers of neurons in the forebrains of male canaries dramatically increased during the mating season. This was the same time in which the birds had to learn new songs to attract females.
Why did these bird brains add neurons at such a critical time in learning? Nottebohm believed it was because fresh neurons helped store new song patterns within the neural circuits of the forebrain, the area of the brain that controls complex behaviors. These new neurons made learning possible. If birds made new neurons to help them remember and learn, Nottebohm thought the brains of mammals might too.
Other scientists believed these findings could not apply to mammals, but Elizabeth Gould later found evidence of newborn neurons in a distinct area of the brain in monkeys, and Fred Gage and Peter Eriksson showed that the adult human brain produced new neurons in a similar area.
For some neuroscientists, neurogenesis in the adult brain is still an unproven theory. But others think the evidence offers intriguing possibilities about the role of adult-generated neurons in learning and memory.
if wrong report me
Answer:
c. population
Explanation:
A localised group of organisms that belong to the same species is called Population. This can be a local population if the organisms stay at a particular place or a metapopulation if the organisms tend to move from one geographical location to another.