d is true
Step-by-step explanation:
 
        
                    
             
        
        
        
Answer:
Step-by-step explanation:
(f+g)(x) = f(x) + g(x) = 3x-1 +x²-6 
(f+g)(x) = x² +3x -5 .....( answer : B )
 
        
             
        
        
        
Answer:
(e) csc x − cot x − ln(1 + cos x) + C
(c) 0
Step-by-step explanation:
(e) ∫ (1 + sin x) / (1 + cos x) dx
Split the integral.
∫ 1 / (1 + cos x) dx + ∫ sin x / (1 + cos x) dx
Multiply top and bottom of first integral by the conjugate, 1 − cos x.
∫ (1 − cos x) / (1 − cos²x) dx + ∫ sin x / (1 + cos x) dx
Pythagorean identity.
∫ (1 − cos x) / (sin²x) dx + ∫ sin x / (1 + cos x) dx
Divide.
∫ (csc²x − cot x csc x) dx + ∫ sin x / (1 + cos x) dx
Integrate.
csc x − cot x − ln(1 + cos x) + C
(c) ∫₋₇⁷ erf(x) dx
= ∫₋₇⁰ erf(x) dx + ∫₀⁷ erf(x) dx
The error function is odd (erf(-x) = -erf(x)), so:
= -∫₀⁷ erf(x) dx + ∫₀⁷ erf(x) dx
= 0
 
        
             
        
        
        
Thannnnnnnnk yooooooouuuuuuu
        
             
        
        
        
The solution to the above  factorization problem is given as f′(x)=4x³−3x²−10x−1. See steps below.
<h3>What are the steps to the above answer?</h3>
Step 1 - Take the derivative of both sides
f′(x)=d/dx(x^4−x^3−5x^2−x−6)
Step 2 - Use differentiation rule d/dx(f(x)±g(x))=d/dx(f(x))±d/dx(g(x))
f′(x)=d/dx(x4)−d/dx(x^3)−d/dx(5x^2)−d/dx(x)−d/dx(6)
f′(x)=4x^3−d/dx(x3)−d/dx(5x^2)−d/dx(x)−d/dx(6)
f′(x)=4x^3−3x2−d/dx(5x^2)−d/dx(x)−d/dx(6)
f′(x)=4x^3−3x^2−10x−d/dx(x)−d/dx(6)
f′(x)=4x^3−3x^2−10x−1−dxd(6)
f′(x)=4x^3−3x^2−10x−1−0
Learn more about factorization:
brainly.com/question/25829061
#SPJ1