Answer:
Parallel lines are coplanar lines
Perpendicular lines are two coplanar lines that intersect at a right angle (90º).
Distance around an unmarked circle can NEVER be measured
So:
True
True
Never True
B is the answer I think I spend to much
Answer:
Im not sure about Q1 but I'll help with Q2
9 =

8 =
![\sqrt[3]{512}](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B512%7D%20)
14 =

2 =
![\sqrt[3]{8}](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B8%7D%20)
4 =

<u>I</u><u> </u><u>h</u><u>o</u><u>p</u><u>e</u><u> </u><u>t</u><u>h</u><u>i</u><u>s</u><u> </u><u>h</u><u>e</u><u>l</u><u>p</u><u>s</u><u> </u><u>:</u><u>)</u>
<u>I</u><u>f</u><u> </u><u>y</u><u>o</u><u>u</u><u> </u><u>w</u><u>o</u><u>u</u><u>l</u><u>d</u><u> </u><u>l</u><u>i</u><u>k</u><u>e</u><u> </u><u>m</u><u>e</u><u> </u><u>t</u><u>o</u><u>,</u><u> </u><u>i</u><u> </u><u>w</u><u>i</u><u>l</u><u>l</u><u> </u><u>r</u><u>e</u><u>s</u><u>p</u><u>e</u><u>c</u><u>t</u><u> </u><u>y</u><u>o</u><u>u</u><u>r</u><u> </u><u>w</u><u>i</u><u>s</u><u>h</u><u>e</u><u>s</u><u> </u><u>a</u><u>n</u><u>d</u><u> </u><u>d</u><u>e</u><u>l</u><u>e</u><u>t</u><u>e</u><u> </u><u>m</u><u>y</u><u> </u><u>a</u><u>n</u><u>s</u><u>w</u><u>e</u><u>r</u><u>.</u>
Since ABCD is a parallelogram, line AB and line DC are parallel and has the same value.
To solve this, equate line AB to be equal with line DC.
So,
Line AB = Line DC
(9x-14)in = (3x +4)in
Next group like terms to get the value of x
9x in-3x in = 4in+14in

=

x = 3in
Since, we now have the value of x, substitute it to line DC’s equation.
DC=(3x+4)in
DC=(3(3) +4)in
DC=(9 +4) in
DC= 13 in
To check if the value is really correct, substitute X to AB
AB=(9x -14)in
AB=(9(3)-14)in
AB=(27-14)in
AB=13 in
Answer:
2.5 pounds of Granny Smith apples.
Step-by-step explanation: