Answer:
0.36 A.
Explanation:
We'll begin by calculating the equivalent resistance between 35 Ω and 20 Ω resistor. This is illustrated below:
Resistor 1 (R₁) = 35 Ω
Resistor 2 (R₂) = 20 Ω
Equivalent Resistance (Rₑq) =?
Since, the two resistors are in parallel connections, their equivalence can be obtained as follow:
Rₑq = (R₁ × R₂) / (R₁ + R₂)
Rₑq = (35 × 20) / (35 + 20)
Rₑq = 700 / 55
Rₑq = 12.73 Ω
Next, we shall determine the total resistance in the circuit. This can be obtained as follow:
Equivalent resistance between 35 Ω and 20 Ω (Rₑq) = 12.73 Ω
Resistor 3 (R₃) = 15 Ω
Total resistance (R) in the circuit =?
R = Rₑq + R₃ (they are in series connection)
R = 12.73 + 15
R = 27.73 Ω
Finally, we shall determine the current. This can be obtained as follow:
Total resistance (R) = 27.73 Ω
Voltage (V) = 10 V
Current (I) =?
V = IR
10 = I × 27.73
Divide both side by 27.73
I = 10 / 27.73
I = 0.36 A
Therefore, the current is 0.36 A.
Answer:
a) The current is i = 1.2 A
b) The charge is Q = 17280 C
c) The energy is E = 43200 J
Explanation:
a) The current is given by the ohm's law wich is:
i = V/R = 3/2.5 = 1.2 A
b) Since the charge is steady we can use the following equation to find the charge amount in that time:
i = Q/t
Q = t*i
Where t is in seconds, so we have 4h * 3600 = 14400 s
Q = 1.2*14400 = 17280 C
c) The energy is the power delivered to the toy multiplied by the time:
P = 1.2*2.5 = 3 W
E = P*t = 3*14400 = 43200 J
It would be 20 protons left because 1-19= 20
You can use Vf^2-Vi^2 = 2ax
Vf^2 - 0 = 2(9.81)(25)
Or you can use energy
mgh = 1/2mv^2
2gh =v^2
Same thing
When trying to describe how an object falls, Newton found that the speed of the object increased in every split second and no mathematics currently used to describe the object at any moment in time.