1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leokris [45]
3 years ago
15

I need answers and solvings to these questions​

Physics
1 answer:
den301095 [7]3 years ago
5 0

1) The period of a simple pendulum depends on B) III. only (the length of the pendulum)

2) The angular acceleration is C) 15.7 rad/s^2

3) The frequency of the oscillation is C) 1.6 Hz

4) The period of vibration is B) 0.6 s

5) The diameter of the nozzle is A) 5.0 mm

6) The force that must be applied is B) 266.7 N

Explanation:

1)

The period of a simple pendulum is given by

T=2\pi \sqrt{\frac{L}{g}}

where

T is the period

L is the length of the pendulum

g is the acceleration of gravity

From the equation, we see that the period of the pendulum depends only on its length and on the acceleration of gravity, while there is no dependence on the mass of the pendulum or on the amplitude of oscillation. Therefore, the correct option is

B) III. only (the length of the pendulum)

2)

The angular acceleration of the rotating disc is given by the equation

\alpha = \frac{\omega_f - \omega_i}{t}

where

\omega_f is the final angular velocity

\omega_i is the initial angular velocity

t is the time elapsed

For the compact disc in this problem we have:

\omega_i = 0 (since it starts from rest)

\omega_f = 300 rpm \cdot \frac{2\pi rad/rev}{60 s/min}=31.4 rad/s is the final angular velocity

t = 2 s

Substituting, we find

\alpha = \frac{31.4-0}{2}=15.7 rad/s^2

3)

For a simple harmonic oscillator, the acceleration and the displacement of the system are related by the equation

a=-\omega^2 x

where

a is the acceleration

x is the displacement

\omega is the angular frequency of the system

For the oscillator in this problem, we have the following relationship

a=-100 x

which implies that

\omega^2 = 100

And so

\omega = \sqrt{100}=10 rad/s

Also, the angular frequency is related to the frequency f by

f=\frac{\omega}{2\pi}

Therefore, the frequency of this simple harmonic oscillator is

f=\frac{10}{2\pi}=1.6 Hz

4)

When the mass is hanging on the sping, the weight of the mass is equal to the restoring force on the spring, so we can write

mg=kx

where

m is the mass

g=9.8 m/s^2 is the acceleration of gravity

k is the spring constant

x = 8.0 cm = 0.08 m is the stretching of the spring

We can re-arrange the equation as

\frac{k}{m}=\frac{g}{x}=\frac{9.8}{0.08}=122.5

The angular frequency of the spring is given by

\omega=\sqrt{\frac{k}{m}}=\sqrt{122.5}=11.1 Hz

And therefore, its period is

T=\frac{2\pi}{\omega}=\frac{2\pi}{11.1}=0.6 s

5)

According to the equation of continuity, the volume flow rate must remain constant, so we can write

A_1 v_1 = A_2 v_2

where

A_1 = \pi r_1^2 is the cross-sectional area of the hose, with r_1 = 5 mm being the radius of the hose

v_1 = 4 m/s is the speed of the petrol in the hose

A_2 = \pi r_2^2 is the cross-sectional area of the nozzle, with r_2 being the radius of the nozzle

v_2 = 16 m/s is the speed in the nozzle

Solving for r_2, we find the radius of the nozzle:

\pi r_1^2 v_1 = \pi r_2^2 v_2\\r_2 = r_1 \sqrt{\frac{v_1}{v_2}}=(5)\sqrt{\frac{4}{16}}=2.5 mm

So, the diameter of the nozzle will be

d_2 = 2r_2 = 2(2.5)=5.0 mm

6)

According to the Pascal principle, the pressure on the two pistons is the same, so we can write

\frac{F_1}{A_1}=\frac{F_2}{A_2}

where

F_1 is the force that must be applied to the small piston

A_1 = \pi r_1^2 is the area of the first piston, with r_1= 2 cm being its radius

F_2 = mg = (1500 kg)(9.8 m/s^2)=14700 N is the force applied on the bigger piston (the weight of the car)

A_2 = \pi r_2^2 is the area of the bigger piston, with r_2= 15 cm being its radius

Solving for F_1, we find

F_1 = \frac{F_2A_1}{A_2}=\frac{F_2 \pi r_1^2}{\pi r_2^2}=\frac{(14700)(2)^2}{(15)^2}=261 N

So, the closest answer is B) 266.7 N.

Learn more about pressure:

brainly.com/question/4868239

brainly.com/question/2438000

#LearnwithBrainly

You might be interested in
A car advertisement claims their car can go from a stopped position to moving 60 miles per hour in 5 seconds. The advertisement
swat32
I do not understand what your saying could u plz be more specific?
8 0
3 years ago
Read 2 more answers
Need help before 10pm tomorrow night
konstantin123 [22]
The first one is A and the second one would be C
5 0
3 years ago
What happens to the magnitude of the force of gravitation between two objects if: 1. distance between the objects is tripled? 2.
Ludmilka [50]
<span>2. mass of both objects doubled? 
Hope it helped!</span>
8 0
3 years ago
Read 2 more answers
How do noise and vibration affect you when operating a boat?
kogti [31]
The noise and vibration could affect your body and mood in many ways while operating a boat. The noise and vibration could make you moody or uncomfortable, because it will also distract you in doing what you're supposed to do. Your body will also be affected, making your body tired because of the things surrounding you and the noise and vibration, it could affect your body in many ways.
3 0
3 years ago
Read 2 more answers
Consider the following three objects, each of the same mass and radius: (1) a solid sphere (2) a solid disk (3) a hoop All three
Vinil7 [7]

Answer:

The correct answer is

a) 1, 2, 3

Explanation:

In rolling down an inclined plane, the potential energy is Transferred to both linear and rotational kinetic energy thus

PE = KE or mgh = 1/2×m×v² + 1/2×I×ω²

The transformation equation fom potential to kinetic energy is =

m×g×h = \frac{1}{2} mv^{2} + \frac{1}{2} (\frac{2}{5} mr^{2} )(\frac{v}{r}) ^{2}

v_{Sphere} = \sqrt{\frac{10}{7} gh}

v_{Hoop} = \sqrt{gh}

v_{Disc}=\sqrt{\frac{4}{3} gh}

Therefore the order is with increasing rotational kinetic energy hence

the first is the sphere 1 followed by the disc 2 then the hoop 3

the correct order is a, 1, 2, 3

8 0
3 years ago
Other questions:
  • 90 percent if amphibians are...? (Choose all that apply) a. Frogs b. Toads c. Newts d. Salamanders e. Caecillans
    14·1 answer
  • All describe the relationship of the parts of an electrical current except: _________.
    6·2 answers
  • a plane flying due east at 395 km/h, is hit by wind blowing at 55 km/h toward the west. what is the resultant velocity of the pl
    6·2 answers
  • Using information about natural laws, explain why some car crashes produce minor injuries and others produce catastrophic injuri
    14·2 answers
  • A student is on a skateboard facing a wall. The student and skateboard have a mass of 75 kilograms. The student pushes off of th
    11·1 answer
  • HELP! Ammeters are placed on each branch of a parallel circuit. How will their readings compare?
    14·1 answer
  • How are ions different from atoms
    14·1 answer
  • IDENTIFY WHAT IS BEING DESCRIBED IN EACH SENTENCE AND WRITE YOUR ANSWER ON THE BLANKS
    11·1 answer
  • A 60 kg adult and a 30kg child are passengers on a rotor ride at an amusement park as shown in the diagram above. When the rotat
    10·1 answer
  • Can someone help me please
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!