1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Artyom0805 [142]
2 years ago
15

Two objects of equal mass are a distance of 5.0 m apart and attract each other with a gravitational force of 3.0 x 10^-7 N find

their mass.
A) 150 kg
B) 9.8 kg
C) 11.000 kg
D) 340 kg​
Physics
1 answer:
Sindrei [870]2 years ago
3 0

Answer

I Think Its 150

You might be interested in
A stone is thrown vertically upward with a speed of 18.0 . (a)How fast is it moving when it reaches a height of 11.0 ? (b)How lo
aliina [53]
For the first part, we are looking for Vf when dy=11.0
Upward is positive, downward is negative. 
So <span>Vf = square root [2(-9.8)(11.0) + (18.0)^2] </span>
<span>Vf = 10.4 m/s your answer is correct. 

For the part b, t is equals to the time took to reach and dy is equals to 11.0
you did, </span>11= 18t m/s-(1/2) 9.8t^2 then <span>-11 + 18t- 9.8t^2. By quadratic formula, for the way down the answer is 2.9 s while on it's way up, the answer is 0.77 s</span><span>
 </span> 
5 0
3 years ago
What regions contain the largest concentration of oil wells
lyudmila [28]

Dubai this part of india has a lot of oil is consider one that has more oil wells.

5 0
2 years ago
What are some ways to defend a castle against attack?
ella [17]

Answer:

you can build a mote around your castle and put crocodiles in it.

Explanation:

they will have to go in the water to get to your castle and will get eaten.

4 0
2 years ago
Read 2 more answers
An electron is released from rest at a distance of 6.00 cm from a proton. If the proton is held in place, how fast will the elec
lana66690 [7]

Answer:

91.87 m/s

Explanation:

<u>Given:</u>

  • x = initial distance of the electron from the proton = 6 cm = 0.06 m
  • y = initial distance of the electron from the proton = 3 cm = 0.03 m
  • u = initial velocity of the electron = 0 m/s

<u>Assume:</u>

  • m = mass of an electron = 9.1\times 10^{-31}\ kg
  • v = final velocity of the electron
  • e = magnitude of charge on an electron = 1.6\times 10^{-19}\ C
  • p = magnitude of charge on a proton = 1.6\times 10^{-19}\ C

We know that only only electric field due to proton causes to move from a distance of 6 cm from proton to 3 cm distance from it. This means the electric force force does work on the electron to move it from one initial position to the final position which is equal to the change in potential energy of the electron due to proton.

Now, according to the work-energy theorem, the total work done by the electric force on the electron due to proton is equal to the kinetic energy change in it.

\therefore \textrm{Kinetic energy change}= \textrm{Change in potential energy}\\\Rightarrow \dfrac{1}{2}m(v^2-u^2)= \dfrac{kpe}{y}-\dfrac{kpe}{x}\\\Rightarrow \dfrac{1}{2}m(v^2-(0)^2)= \dfrac{kpe}{0.03}-\dfrac{kpe}{0.06}\\\Rightarrow \dfrac{1}{2}mv^2= \dfrac{100kpe}{3}-\dfrac{100kpe}{6}\\\Rightarrow \dfrac{1}{2}mv^2= \dfrac{100kpe}{6}\\

\Rightarrow v^2= \dfrac{100kpe\times 2}{6m}\\\Rightarrow v^2= \dfrac{100kpe}{3m}\\\Rightarrow v^2= \dfrac{100\times 9\times 10^9\times 1.6\times 10^{-19}\times 1.6\times 10^{-19}}{3\times 9.1\times 10^{-31}}\\\Rightarrow v^2=8.44\times 10^3\\\Rightarrow v=91.87\ m/s\\

Hence, when the electron is at a distance of c cm from the proton, it moves with a velocity of 91.87 m/s.

8 0
3 years ago
A string is tied between two posts separated by 2.4 m. When the string is driven by an oscillator at frequency 567 Hz, 5 points
Alex787 [66]

Explanation:

The given data is as follows.

       Length (l) = 2.4 m

       Frequency (f) = 567 Hz

Formula to calculate the speed of a transverse wave is as follows.

                  f = \frac{5}{2l} \times v

Putting the gicven values into the above formula as follows.

                  f = \frac{5}{2l} \times v

                 567 Hz = \frac{5}{2 \times 2.4 m} \times v

                      v = 544.32 m/s

Thus, we can conclude that the speed (in m/s) of a transverse wave on this string is 544.32 m/s.

5 0
3 years ago
Other questions:
  • If an airplane is flying directly north at 300.0 km/h, and a crosswind is hitting the airplane at 50.0 km/h from the east, what
    7·1 answer
  • Give three examples that show the importance of gravity to humans
    5·1 answer
  • You found the distance that you will cover while braking. You can use the expected amount of time for braking to check your answ
    14·1 answer
  • The ball X has a known position at 3 different times, each 1 second apart. The positions of the ball are (1.8,2.2)m, (4.4,4.8)m,
    10·1 answer
  • The magnitude of the magnetic field that a long and extremely thin current-carrying wire produces at a distance of 3.0 µm from t
    11·2 answers
  • One speed skater starts across a frozen lake at an average speed of 8 m/s. Ten seconds later, a second speed skater starts from
    9·1 answer
  • An 877 kg drag race car accelerates from rest to 116 km/h in 0.951 s. What change in momentum does the force produce? Answer in
    10·1 answer
  • Sabiendo que el indice de refracción dela gua es 1,33 calcula el ángulo de refracción resultante para un rayo de luz que incide
    14·1 answer
  • What is the full meaning of ROYGBIV?​
    6·2 answers
  • What is an electric field? How<br> do you calculate the electric<br> field due to a point charge?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!