1.
where in a population:
p - the frequency of the <em>A</em> allele
q - the frequency of the <em>a</em> allele
- the frequency of the <em>AA</em> homozygous genotype
- the frequency of the <em>aa</em> homozygous genotype
2pq - the frequency of the <em>Aa</em> heterozygous genotype
A population at equilibrium will have the sum of all the alleles at the locus equal to 1.
2. Conditions:
A. The breeding population must be large
B. No natural selection
C. The mating must occur randomly
D. No mutations to cause changes in allelic frequency.
E. No changes in allelic frequency due to immigration or emigration.
3. By comparing the actual genetic structure of a population with what we would expect from a Hardy-Weinberg equilibrium, we can determine how much it deviates from the baseline provided by the mathematical model. Depending on how large the deviation is, one or more of the model's assumptions are being violated. Thus, we can attempt to determine which one.
Answer:
jayfeather friend me
Explanation:
Answer: The mechanical advantage of a machine is 4. ... Mechanical advantage MA is the ratio of output (generated by the machine) force to input (applied to the machine) force. So MA = 4 means that for example if you apply 100 N then your machine will multiply that force and generate 400 N.
They allow the heart to pump more blood by decreasing the ESV.
The weakest died out and only the intelligent and strong survived to pass on the most useful traits, determining the way a species evolved - growing more intelligent or athletic as a result of these patterns.
Answer:
precession
Explanation:
The orbit isn’t the simple ellipse, rather it is one that moves a little, loop after loop. This motion is called precession, and you may have heard about it when astronomers talk about the precession of the orbit of Mercury