Answer:
The molar mass of the metal is 54.9 g/mol.
Explanation:
When we work with gases collected over water, the total pressure (atmospheric pressure) is equal to the sum of the vapor pressure of water and the pressure of the gas.
Patm = Pwater + PH₂
PH₂ = Patm - Pwater = 1.0079 bar - 0.03167 bar = 0.9762 bar
The pressure of H₂ is:

The absolute temperature is:
K = °C + 273 = 25°C + 273 = 298 K
We can calculate the moles of H₂ using the ideal gas equation.

Let's consider the following balanced equation.
M(s) + H₂SO₄(aq) ⟶ MSO₄(aq) + H₂(g)
The molar ratio of M:H₂ is 1:1. So, 9.81 × 10⁻³ moles of M reacted. The molar mass of the metal is:

Answer: The products formed in this Bronsted-Lowry reaction are
and
.
Explanation:
According to Bronsted-Lowry, acids are the species which donate hydrogen ions to another specie in a chemical reaction.
Bases are the species which accept a hydrogen ion upon chemical reaction.
For example, 
Here, the products formed in this Bronsted-Lowry reaction are
and
.
Thus, we can conclude that the products formed in this Bronsted-Lowry reaction are
and
.
Is bubble chamber one of your choices? Bubble chamber sounds like a good fit for the question.
Answer:
Explanation:
Since it first order, we use order rate equation
In (
) = -kt where A1 is the final quality = 0.8 (80%), A0 is the initial quality = 1 ( 100%)
also, t half life =
where k is rate constant
k =
= 0.0154
In (
) = - 0.0154 t
-0.223 / -0.0154 = t
t = 14.49 approx 14.5 days from the date the yogurt was packaged