First, we should figure out exactly what a mode is.
What is the mode of a number set? The mode is the number that appears most often in a set. If they are all equal, there is no mode. If there are two, it is called bimodal, if there are 3 it is called trimodal, and if there are 4 or more modes, you would call it multimodal.
Now, we have to figure out which number is the mode of the numbers. We need to count each of the numbers. The easiest way on any laptop or computer is by doing <u>CTRL</u>+<u>F</u>, which would make it so you can find words or phrases and see how many times it repeats. I will leave out all of the numbers that do not repeat simply because they don't.
78 repeats 3 times and 43 repeats itself twice. Those are the only two that are in the system more than one, and we can see which one repeats the most.
Answer: The mode of the given number systems is <u>78</u>, with it repeating 3 times.
Answer:
40 + 8x - 6 + 90=180
x=7
8X7-6=50
Answer: 50
Step-by-step explanation:
Right Angle=90 degrees
Answer: AREA OF H IS S= R4
Step-by-step explanation:
Here are some things you should know when solving algebraic equations.
If you add an expression to both sides of an equation, the resulting equation will have the same solution set as the original equation. In other words, they will be equivalent. This is true for all operations. As long both sides are treated the same, the equation will stay balanced.
You will also need to know how to combine like terms. But what are like terms to begin with? Like terms are defined as two terms having the same variable(s) (or lack thereof) and are raised to the same power. In mathematics, something raised to the first power stays the same. So, 5x and 10x are like terms because they both have the same variable and are raised to the first power. You don’t see the exponents because it doesn’t change the value of the terms.
To combine like terms, simplify add the coefficients and keep the common variable(s) and exponent.
The distributive property is another important rule you will need to understand.
The distributive property is used mostly for simplifying parentheses in expressions/equations.
For example, how would you get rid of the parentheses here?
6(x + 1)
If there wasn’t an unknown in between the parentheses, you could just add then multiply. That is what the distributive property solves.
The distributive property states that a(b + c) = ab + ac
So, now we can simplify our expression.
6(x + 1) = 6x + 6