Answer:
yes
Step-by-step explanation:
We are given that a Cauchy Euler's equation
where t is not equal to zero
We are given that two solutions of given Cauchy Euler's equation are t,t ln t
We have to find the solutions are independent or dependent.
To find the solutions are independent or dependent we use wronskain

If wrosnkian is not equal to zero then solutions are dependent and if wronskian is zero then the set of solution is independent.
Let 


where t is not equal to zero.
Hence,the wronskian is not equal to zero .Therefore, the set of solutions is independent.
Hence, the set {t , tln t} form a fundamental set of solutions for given equation.
<em>Greetings from Brasil...</em>
According to the statement of the question, we can assemble the following system of equation:
X · Y = - 2 i
X + Y = 7 ii
isolating X from i and replacing in ii:
X · Y = - 2
X = - 2/Y
X + Y = 7
(- 2/Y) + Y = 7 <em>multiplying everything by Y</em>
(- 2Y/Y) + Y·Y = 7·Y
- 2 + Y² = 7X <em> rearranging everything</em>
Y² - 7X - 2 = 0 <em>2nd degree equation</em>
Δ = b² - 4·a·c
Δ = (- 7)² - 4·1·(- 2)
Δ = 49 + 8
Δ = 57
X = (- b ± √Δ)/2a
X' = (- (- 7) ± √57)/2·1
X' = (7 + √57)/2
X' = (7 - √57)/2
So, the numbers are:
<h2>
(7 + √57)/2</h2>
and
<h2>
(7 - √57)/2</h2>
Answer:
Super Hyper Ultra Ultimate Deluxe Perfect Amazing Shining God 東方不敗 Master Ginga Victory Strong Cute Beautiful Galaxy Baby 無限 無敵 無双 senchou here, thank you for the points :D
Step-by-step explanation:
All you have to do is divide 38 divided by 5 which = 7 r 3
I hope this helps.
Have a awesome day. :)