The magnitude of other charge will be 1 × 10⁻² coulomb
The formula of electrostatic force is
Electrostatic force = K q1 q1 / r²
where k is the coulomb's constant whose value is 9 × 10⁹
q1 and a2 are the magnitude of charges
and r is the distance between them
magnitude of the force given to us is 9.0 × 10⁻⁵ newtons
magnitude of one charge = 1.0 × 10⁻⁶ coulomb
Force = K q1 q2 / r²
9.0 × 10⁻⁵ = ( ( 9 × 10⁹ ) × ( 1.0 × 10⁻⁶ ) × q2 ) / 1
9.0 × 10⁻⁵ = 9 × 10³ × q2
10⁻² = q2
Charge on q2 is 1 × 10⁻² coulomb
So the magnitude of the second charge is came out to be 1 × 10⁻² coulomb after applying the formula of electrostatic force.
Learn more about electrostatic force here:
brainly.com/question/17692887
#SPJ10
Answer:
(a): 
(b): 
Explanation:
<u>Given:</u>
- Charge on one sphere,

- Charge on second sphere,

- Separation between the spheres,

Part (a):
According to Coulomb's law, the magnitude of the electrostatic force of interaction between two static point charges is given by

where,
k is called the Coulomb's constant, whose value is 
From Newton's third law of motion, both the spheres experience same force.
Therefore, the magnitude of the force that each sphere experiences is given by

The negative sign shows that the force is attractive in nature.
Part (b):
The spheres are identical in size. When the spheres are brought in contact with each other then the charge on both the spheres redistributes in such a way that the net charge on both the spheres distributed equally on both.
Total charge on both the spheres, 
The new charges on both the spheres are equal and given by

The magnitude of the force that each sphere now experiences is given by
Explanation:
Derived quantities are quantities dependent on fundamental quantities while derived units are the units of these quantities
F=ma so a=F/m
a=225/55=4.09 m/sec^2
Answer:
Rest and motion are relative terms. In simple terms, an object that changes its position is said to be in motion while the opposite action causes an object to be at rest.
Explanation: