Answer:
410.196 J/[kg*°C].
Explanation:
1) the equation of the energy is: E=c*m*(t₂-t₁), where E - energy (523 J), c - unknown specific heat of copper, m - mass of this copper [kg], t₂ - the final temperature, t₁ - initial temerature;
2) the specific heat of copper is:
![c=\frac{E}{m*(t_2-t_1)}; \ => \ c=\frac{523}{0.085*(45-30)}=\frac{523}{1.275}=410.196[\frac{J}{kg*C}].](https://tex.z-dn.net/?f=c%3D%5Cfrac%7BE%7D%7Bm%2A%28t_2-t_1%29%7D%3B%20%5C%20%3D%3E%20%5C%20c%3D%5Cfrac%7B523%7D%7B0.085%2A%2845-30%29%7D%3D%5Cfrac%7B523%7D%7B1.275%7D%3D410.196%5B%5Cfrac%7BJ%7D%7Bkg%2AC%7D%5D.)
Hi there
In order for an electron to jump into a higher energy state, it must first absorb energy (heat, light, etc).
When an electron goes back down to the ground state from the excited state, it emits energy usually in the form of a photon.
i hope this helps
Glycerol attractive forces are great than water. The harder to break, the more energy is needed.
Answer:
On the picture are all principles cited on wikipedia.
Explanation:
So the answer is
1. Environment must be exploited to improve living standards
2. Flourishing human and nonhuman life depends on diversity of life forms
<span>The potential of NADH and FADH2 is converted to more ATPthrough an electron transport chain with oxygen as the "terminal electron acceptor". Most of the ATP produced by aerobic cellular respiration is made by oxidative phosphorylation.
Hope this helps. :)
</span>