The higher the pressure, the higher boiling point of water. At lower the pressure, the boiling point of water comes down. So, the lower pressure inreases the boiling resulting more evaporation. As we go higher in altitude, the atmospheric pressure decreases. This results in decreasing the boiling point at higher altitude and increase in boiling of water. In fact, at the sea level ,the the sea water boils at 100 degree C where atmospheric pressre is normal. However , the boiling takes place at a lower temperature at the top of a mountain due to low pressure. In other words the boling is faster at the top of a mountain than that at its foot.
Answer:
103063860 Pa
Explanation:
= Density of seawater = 1030 kg/m³
g = Acceleration due to gravity = 9.81 m/s²
h = Depth at which pressure is being measured = 10.2 km
The gauge pressure is given by

Therefore, the gauge pressure at a depth of 10.2 km is 103063860 Pa
Answer:
The radiation wavelength is 1.08 X 10⁻¹² m
Explanation:
Frequency is the ratio of speed of photon to its wavelength
F = c/λ
where;
c is the speed of the photon = 3 x 10⁸ m/s
λ is the wavelength of gamma ray = ?
F is the frequency of the gamma ray = 1/T
T is the period of radiation = 3.6x10⁻²¹ s

λ = T*C
λ = 3.6x10⁻²¹ * 3 x 10⁸
λ = 1.08 X 10⁻¹² m
Therefore, the radiation wavelength is 1.08 X 10⁻¹² m
Drag from her armas would slow her down if she was spinning at a fast speed
Answer:
Tension maximum =1131.9 N
Tension minimum =868.28 N
Tension at 3/4= 1065.995 N
Explanation:
a)
Given Mass of wrecking ball M1=88.6 Kg
Mass of the chain M2=26.9 Kg
Maximum Tension Tension max=(M1+M2) × (9.8 m/s²)
=(88.6+26.9) × (9.8 m/s²)
=115.5 × 9.8 m/s²
Tension maximum =1131.9 N
b)
Minimum Tension Tension minimum=Mass of the wrecking ball only × 9.8 m/s²
=88.6 × 9.8 m/s²
Tension minimum =868.28 N
c)
Tension at 3/4 from the bottom of the chain =In this part you have to use 75% of the chain so you have to take 3/4 of 26.9
= (3/4 × 26.9)+88.9) × 9.8 m/s²
= (20.175+88.6) × 9.8 m/s²
=(108.775) × 9.8 m/s²
=1065.995 N