D. compost bins because they recycle matter into a new form
Explanation:
- The law of conservation of matter is about the creation and how matter is being transferred. According to the law, the matter cannot be destroyed. The matter should always be transferred from one form to another in the universe. There is never destruction of matter happens. There is also one more point to it, as it cannot be destroyed it also cannot be created.
- Here in the options, option A tells us the creation which is not possible, option B says about the destruction of matter which is not true according to the law, C is about storing the matter which will not happen because its get transferred and D is the correct option because it talks about the recycle/ transfer of matter.
Answer:
I = 0.25 [amp]
Explanation:
To solve this problem we must use ohm's law which tells us that the voltage is equal to the product of the current by the resistance.
V = I*R
where:
V = voltage [Volt]
I = amperage or current [amp]
R = resistance [ohm]
Since all resistors are connected in series, the total resistance will be equal to the arithmetic sum of all resistors.
Rt = 2 + 8 + 14
Rt = 24 [ohm]
Now clearing I for amperage
I = V/Rt
I = 6/24
I = 0.25 [amp].
Answer:
Orbital Eccentricity
Planet Orbital Eccentricity
(Point in Orbit Closest to Sun)
measured in AU's
Mercury 0.206
Venus 0.007
Earth 0.017
Mars 0.093
Jupiter 0.048
Saturn 0.056
Uranus 0.047
Neptune 0.009
Pluto 0.248
Explanation:
link to information:
https://www.enchantedlearning.com/subjects/astronomy/glossary/Eccentricity.shtml
Answer:


Explanation:
The missing image of the figure slide is attached in below.
However, from the model, it is obvious that it is in equilibrium.
As a result, the relation of the force and the torque is said to be zero.
i.e.
and 
From the image, expressing the forces through the y-axis, we have:

Also, let the force
be the pivot and computing the torque to determine
:
Then:




For the force equation:

where:

Then:




A motion of particles quickly moving back and forth a point of equilibrium