D is the answer as the equation, if it was a graph, is moving towards the left side of the graph at -6.
Answer:
so
equals 2x2x2x2x2x2x2x2
Step-by-step explanation:
Its that because when expanding Exponents, you always put the first number of the exponet first. like for example,
, you put the three 2 times and multiply. 3x3
Answer:
f(-4) = -2
Step-by-step explanation:
To find f(-4) use the "piece" of the function rule defined for x < -3 (because -4 is less than -3). That part of the rule says the output (range) value is x + 2, so f(-4) = -4 + 2 = -2.
Answer: see proof below
<u>Step-by-step explanation:</u>
Use the Double Angle Identity: sin 2Ф = 2sinФ · cosФ
Use the Sum/Difference Identities:
sin(α + β) = sinα · cosβ + cosα · sinβ
cos(α - β) = cosα · cosβ + sinα · sinβ
Use the Unit circle to evaluate: sin45 = cos45 = √2/2
Use the Double Angle Identities: sin2Ф = 2sinФ · cosФ
Use the Pythagorean Identity: cos²Ф + sin²Ф = 1
<u />
<u>Proof LHS → RHS</u>
LHS: 2sin(45 + 2A) · cos(45 - 2A)
Sum/Difference: 2 (sin45·cos2A + cos45·sin2A) (cos45·cos2A + sin45·sin2A)
Unit Circle: 2[(√2/2)cos2A + (√2/2)sin2A][(√2/2)cos2A +(√2/2)·sin2A)]
Expand: 2[(1/2)cos²2A + cos2A·sin2A + (1/2)sin²2A]
Distribute: cos²2A + 2cos2A·sin2A + sin²2A
Pythagorean Identity: 1 + 2cos2A·sin2A
Double Angle: 1 + sin4A
LHS = RHS: 1 + sin4A = 1 + sin4A 
Length = 2x+4
Step-by-step explanation:
P=2W+2L
14x+8 =2(5x)+2L
14x+8=10x+2L
14x+8-10x=2L
4x+8=2L
(4x+8)/2=L
<u>2x+4=L</u>