Answer:
The answer is A
Step-by-step explanation:
If Tyler's budget is $125, he cannot spend more than that. He can spend at most $125; which is represented as less than or equal to.

Answer:
I'd say you need to be more specific.
Step-by-step explanation:
"Different" doesn't tell you much.
Consider the equations ...
These equations are "different", but they are <em>dependent</em>.
_____
I'd mentally (or actually) put the equations in the same form and compare the coefficients of x and y. If they have different ratios, the system is independent and consistent.
If they have the same ratio, the system will not have a single solution. Whether there is no solution or an infinite number of solutions depends on the constant, which I would examine next.
The system above can be put in the form
In both cases, the ratio of the x coefficient to the y coefficient is 2/-1 = 4/-2 = -2. This means the lines are at least parallel, if not identical. The numbers in the second equation are all 2 times the numbers in the first equation, so the equations are <em>dependent</em>, and there are an infinite number of solutions. (Both describe the same line.)
If the second equation were 4x -2y = 1, then the two equations would be describing parallel lines, so they would be called <em>inconsistent</em>.
The answer is
x=2t and t=x/2, but we have <span>y = 3t -1
so </span><span>y = 3(x/2) -1
so y = 3x/2 - 1</span>
One way to understand division is to look at it as repeated
subtraction. When you "divide by" a divisor number, you're
asking "how many times can I subtract this divisor from the
dividend, before the dividend is all used up ?".
Well, if the divisor is ' 1 ', then you're taking ' 1 ' away from the
dividend each time, and the number of times will be exactly
the same as the dividend.
If the divisor is more than ' 1 ', then you subtract more than ' 1 '
from the dividend each time, and the number of times you can
do that is less than the dividend itself.
If the divisor is less than ' 1 ', then you only take away a piece of
' 1 ' each time. You can do that more times than the number in
the dividend, because you only take away a piece each time.
1 times greater than 503,497