Answer:
1. 610,000 lb ft
2. 490 J
Explanation:
1. First, convert mi/hr to ft/s:
100 mi/hr × (5280 ft / mi) × (1 hr / 3600 s) = 146.67 ft/s
Now find the kinetic energy:
KE = ½ mv²
KE = ½ (1825 lb / 32.2 ft/s²) (146.67 ft/s)²
KE = 610,000 lb ft
2. KE = ½ mv²
KE = ½ (5 kg) (14 m/s)²
KE = 490 J
the answer is A it is so easy question
Answer: hope it helps you...❤❤❤❤
Explanation: If your values have dimensions like time, length, temperature, etc, then if the dimensions are not the same then the values are not the same. So a “dimensionally wrong equation” is always false and cannot represent a correct physical relation.
No, not necessarily.
For instance, Newton’s 2nd law is F=p˙ , or the sum of the applied forces on a body is equal to its time rate of change of its momentum. This is dimensionally correct, and a correct physical relation. It’s fine.
But take a look at this (incorrect) equation for the force of gravity:
F=−G(m+M)Mm√|r|3r
It has all the nice properties you’d expect: It’s dimensionally correct (assuming the standard traditional value for G ), it’s attractive, it’s symmetric in the masses, it’s inverse-square, etc. But it doesn’t correspond to a real, physical force.
It’s a counter-example to the claim that a dimensionally correct equation is necessarily a correct physical relation.
A simpler counter example is 1=2 . It is stating the equality of two dimensionless numbers. It is trivially dimensionally correct. But it is false.