Answer:
The image distance is 17.56 cm
Explanation:
We have,
Height of light bulb is 3 cm.
The light bulb is placed at a distance of 50 cm. It means object distance is, u =-50 cm
Focal length of the lens, f = +13 cm
Let v is distance between image and the lens. Using lens formula :

So, the image distance is 17.56 cm.
The sum of the kinetic and potential energies of a system of objects is conserved only when no external force acts on the objects.
<h3>
Conservation of mechanical energy</h3>
The principle of conservation of mechanical energy states that the total mechanical energy of an isolated system (absence of external force) is always constant.
M.A = P.E + K.E
where;
P.E is potential energy
K.E is kinetic energy
Thus, the sum of the kinetic and potential energies of a system of objects is conserved only when no external force acts on the objects.
Learn more about conservation of mechanical energy here: brainly.com/question/24443465
Answer:
) pulls the ladder in the direction opposite
Explanation:
This is in line with lenz law that states that the magnetic field induced in a conductor act to oppose the magnetic field that produced it
Answer:
D
Explanation:
appearance is not a imp factor . location could be imp. becoz a proper environment is need to study such courses.
Answer:
b. 0.25cm
Explanation:
You can solve this question by using the formula for the position of the fringes:

m: order of the fringes
lambda: wavelength 500nm
D: distance to the screen 5 m
d: separation of the slits 1mm=1*10^{-3}m
With the formula you can calculate the separation of two adjacent slits:

hence, the aswer is 0.25cm