Answer:
a) "gravitation" is the force causing you to go down a waterslide
b) It is "fluid friction" as a solid object (our body) moves over a fluid (the water)
c) It would become "sliding friction" since two solid surfaces slide over each other
d) fluid friction being the weakest friction, switching to sliding friction means a higher decrease in speed and therefore removing the water from a slide will decrease our speed
Answer:
If all these three charges are positive with a magnitude of
each, the electric potential at the midpoint of segment
would be approximately
.
Explanation:
Convert the unit of the length of each side of this triangle to meters:
.
Distance between the midpoint of
and each of the three charges:
Let
denote Coulomb's constant (
.)
Electric potential due to the charge at
:
.
Electric potential due to the charge at
:
.
Electric potential due to the charge at
:
.
While forces are vectors, electric potentials are scalars. When more than one electric fields are superposed over one another, the resultant electric potential at some point would be the scalar sum of the electric potential at that position due to each of these fields.
Hence, the electric field at the midpoint of
due to all these three charges would be:
.
The object D is made up of material Lead. The correct option is D.
<h3>What is specific heat?</h3>
The specific heat is the amount of heat required to change the temperature by 1°C. It is denoted by C.
Two 1-kg objects, C and D, increase in temperature by the same amount, but the thermal energy transfer of object C is greater than the thermal energy transfer of object D. The object C has a specific heat of 235 J/kg-K.
Q = m C ΔT
Qc > Qd
The energy transfer is proportional to specific heat.
Specific heat of D must be less. The possible material with specific heat less than the given value is for Lead material.
Thus, the correct option is D.
Learn more about specific heat,
brainly.com/question/11297584
#SPJ1
Answer:
0.0321 g
Explanation:
Let helium specific heat 
Assuming no energy is lost in the process, by the law of energy conservation we can state that the 20J work done is from the heat transfer to heat it up from 273K to 393K, which is a difference of ΔT = 393 - 273 = 120 K. We have the following heat transfer equation:

where
is the mass of helium, which we are looking for:

It depends how you want it to work do you want to take a picture oh yea and to do that you must create a account btw