Answer:
The drag coefficient is
Explanation:
From the question we are told that
The density of air is 
The diameter of bottom part is
The power trend-line equation is mathematically represented as

let assume that the velocity is 20 m/s
Then


The drag coefficient is mathematically represented as

Where
is the drag force
is the density of the fluid
is the flow velocity
A is the area which mathematically evaluated as

substituting values


Then

Pretty sure it is clockwise if I am not mistaken
Answer:
<h3>14.97m/s</h3>
Explanation:
Given
Initial velocity of the car u = 8m/s
Distance travelled by the rider S = 40m
Acceleration a = 2m/s²
Required
rider's velocity after the acceleration v
Using the equation of motion
v² = u²+2as
v² = 8²+2(2)(40)
v² = 64+160
v² = 224
v = √224
v = 14.97m/s
Hence the rider's velocity after the acceleration is 14.97m/s
The kinetic energy (KE) is 250 J and the gravitational potential energy (GPE) is 392 J
Scott needs to determine the density of a metallic rod. First, he should determine the mass of his sample on the laboratory balance. Second, he should measure the volume of his sample by water displacement. Finally, he can calculate the density by dividing mass/volume.
Hope this helped ;)