So what we can do is apply the<span> Hooke's law wich states that
F = -kx ( P.S the -ve sign means opposite in direction )
Also we will need to determine the spring's constant with the formula:
k = F / x
Where F = the force ( = 20 N )
x = the displacement of the end of the spring from it's position ( = 0.20 m )
k = the spring's constant ( = unknown )
So this would be: k = 20 / 0.20 = 100 N/m
The period of oscillation of 4 kg : T = 2 * pi * square root m / k
T = 2 * pi * square root 4 / 100
T = 1.256 seconds
Hope it helps</span>
Answer:

Explanation:
As we know that the length of the conductor is given as

now if it is converted into a square then we have


now the are of the loop will be

now the magnetic flux is defined as

here we know
B = 1.0 T



Answer:
They can be rank in the following way:
- A radio signal from an AM radio station at 680 kHz on the dial
- Radiation from an FM radio station at 93.1 MHz on the dial
- The red light of a light-emitting diode, such as in a calculator
- The yellow light from sodium vapor streetlights
- The gamma rays produced by a radioactive nuclide used in medical
Explanation:
The electromagnetic spectrum is the distribution of radiation due to the different frequencies at which it radiates and its different intensities, that radiation is formed by electromagnetic waves, which are transverse waves formed by an electric field and a magnetic field perpendicular to it.
Radiation is distributed along that electromagnetic spectrum according to the wavelength or frequency.
Highest frequencies
X-rays
Ultraviolet rays
Visible region
Lower frequencies
Infrared
Microwave
Radio waves
Radio waves and the visible region (yellow light, red light) are part of the electromagnetic spectrum, any radiation of that electromagnetic spectrum has a speed of 3.00x10^{8}m/s in vacuum.
However, the following equation relates the velocity, the frequency, and the wavelength:
(1)
(2)
It can be see in equation 2 that the frequency and the wavelength are inversely proportional (when the frequency increases the wavelength decreases).
Therefore, for what was already discussed, they can be rank in the next way:
- A radio signal from an AM radio station at 680 kHz on the dial
- Radiation from an FM radio station at 93.1 MHz on the dial
- The red light of a light-emitting diode, such as in a calculator
- The yellow light from sodium vapor streetlights
- The gamma rays produced by a radioactive nuclide used in medical
Summary:
In the case of the radio waves can be used:
Case for
:


Case for
:


<h2>
Answer: dark matter</h2>
It is believed that the Milky Way has 90% dark matter and only 10% ordinary matter (known matter). Because, like gravity, <u>dark matter can not be observed directly</u>, however its existence is inferred through the movement of the stars and the cosmic dust within the galaxy.
It is important to note that dark matter composition is unknown and corresponds to 80% of the matter in the universe. It does not emit or interact with any type of electromagnetic radiation, but it interacts with the known matter through gravity.
It's easier for you to solve these than to try and read my solutions if I solve them.
Use this magic formula:
(period) · (frequency) = 1
If you handle the magic formula carefully and correctly, you can get these facts out of it:
-- Period = 1 / frequency
-- Frequency = 1 / period
Use the first one to solve #1.
Use the second one to solve #2.