Answer:
2.5 * 10^-3
Explanation:
<u>solution:</u>
The simplest solution is obtained if we assume that this is a two-dimensional steady flow, since in that case there are no dependencies upon the z coordinate or time t. Also, we will assume that there are no additional arbitrary purely x dependent functions f (x) in the velocity component v. The continuity equation for a two-dimensional in compressible flow states:
<em>δu/δx+δv/δy=0</em>
so that:
<em>δv/δy= -δu/δx</em>
Now, since u = Uy/δ, where δ = cx^1/2, we have that:
<em>u=U*y/cx^1/2</em>
and we obtain:
<em>δv/δy=U*y/2cx^3/2</em>
The last equation can be integrated to obtain (while also using the condition of simplest solution - no z or t dependence, and no additional arbitrary functions of x):
v=∫δv/δy(dy)=U*y/4cx^1/2
=y/x*(U*y/4cx^1/2)
=u*y/4x
which is exactly what we needed to demonstrate.
Also, using u = U*y/δ in the last equation we can obtain:
v/U=u*y/4*U*x
=y^2/4*δ*x
which obviously attains its maximum value for the which is y = δ (boundary-layer edge). So, finally:
(v/U)_max=δ^2/4δx
=δ/4x
=2.5 * 10^-3
X-ray)
because Electromagnetic waves are in act
<span>1. 10x
2. fault line
3. UV Waves
4. through solids and liquids
5. inner core
6. low temperature
7. cinder cone
8. earth's core
9. they are all caused by plate movement
10. inner mantle
11. transverse
12.divergent
13. none of these
14. fault
15. Lithospheric plates
16. foreshocks and aftershocks can happen at the same time
17. stratosphere
18. this question is not complete</span>
Electrical energy is your answer.