Answer:
To understand the utility in sequence comparison and in the search for proteins that have a common evolutionary origin, you need to be clear about some concepts about how to evolve proteins. The idea that is accepted is that throughout the evolution some species are giving rise to new ones. Behind this is the genetic variation of organisms, that is, the evolution of genomes and their genes, as well as the proteins encoded by them.
Explanation:
Three ways can be distinguished by which genes evolve, and by proteins: mutation, duplication and shuffling of domains. When differences between homologous protein sequences are observed, these differences change to do with the way of life of the organism, an example of this, bacteria that live in hot springs at very high temperatures have proteins with a very high denaturation temperature, and these proteins are usually richer in cysteines. On the other hand, the fact that in positions of the sequences they remain unchanged (preserved positions), means that these have a special importance for the maintenance of the structure or function of the protein and its modification has not been tolerated throughout of evolution
Answer:
A. It is the ratio of the concentrations of products to the concentrations of reactants.
Explanation:
The equilibrium constant of a chemical reaction is the ratio of the concentration of products to the concentration of reactants.
This equilibrium constant can be expressed in many different formats.
- For any system, the molar concentration of all the species on the right side are related to the molar concentrations of those on the left side by the equilibrium constant.
- The equilibrium constant is a constant at a given temperature and it is temperature dependent.
- The derivation of the equilibrium constant is based on the law of mass action.
- It states that "the rate of a chemical reaction is proportional to the product of the concentration of the reacting substances. "
Answer:
The object at 50°C will have a higher kinetic energy.
Explanation:
Temperature is a measure of the average kinetic energy of the particles in an object. As you introduce more energy into the system (e.g. heat the object), the particles on average move faster because they have more kinetic energy.