Answer:
Its official chemical symbol is O, and its atomic number is 8, which means that an oxygen atom has eight protons in its nucleus. ... Oxygen is normally found as a
Answer:
<u><em>A. They don't form compounds</em></u>
Explanation:
- High density: The strong bonding between the atoms in transition metals cause them to be tightly held together, creating a high density. Colored compounds: Transition metals tend to form more colored compounds than other elements, either in solid form or dissolved in a solvent.
The given reaction is not spontaneous.
We must recognize changes in oxidation states that take place across elements in order to balance these equations. To accomplish this, keep in mind following guidelines:
A neutral element on its own has an oxidation number of zero.For a neutral molecule, the total number of oxidations must be zero.The net charge of an ion is equal to the sum of its oxidation numbers.In a compound: hydrogen prefers +1, oxygen prefers -2, fluorine prefers -1.In a compound with no oxygen present the other halogens will also prefer -1.
One of the mercury atoms is oxidized from +1 to +2 in the simple aqueous ion, for a loss of 1 electron.
Oxidation half-reaction:
→

The other mercury is reduced from +1 to zero in mercury metal, for a gain of 1 electron.
Reduction half-reaction:
→

This is a disproportionation redox reaction !
Net reaction:
→

The cell potential is negative so this reaction is NOT spontaneous.
To learn more about the non spontaneous reaction please click on the link brainly.com/question/20358734
#SPJ4
Answer:
The correct answer is 4
Explanation:
Boron trifluoride (BF₃) has a molecular geometry (as shown in the image in the question) referred to as trigonal planar; this is because each of the the fluorine atoms/molecules (bonded to the central boron atom) is placed in such a way that they form the three "end points"/"domains" of an equilateral triangle. Hence, the correct option is the last option.
Answer: (1) It is exothermic and DH equals -91.8 kJ.
Explanation: 
There are two types of reactions in terms of heat:
Endothermic reactions are those reactions in which heat is absorbed by the system and exothermic reactions are those reactions in which heat is released by the system.
As the heat is given on the products side, it means the heat is released in the reaction and thus the reaction is exothermic. The enthalpy change for exothermic reaction is written as negative and the enthalpy change for endothermic reaction is written as positive.