Answer:
4 moles of neon
Explanation:
Given data:
Number of moles of neon = ?
Number of atoms of neon = 2.4×10²⁴ atoms
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
1.008 g of hydrogen = 1 mole = 6.022 × 10²³ atoms of hydrogen
For given neon atoms:
1 mol = 6.022 × 10²³ atoms
2.4×10²⁴ atoms × 1 mol / 6.022 × 10²³ atoms
0.4×10¹ mol = 4 mol
Answer:
While Bohr's atomic model hypothesizes that electrons move in particular energy levels around the nucleus, the electron cloud model suggests that electrons move in an unpredictable pattern but are more likely to be in certain regions than others.
Answer:
The density of the ideal gas is directly proportional to its molar mass.
Explanation:
Density is a scalar quantity that is denoted by the symbol ρ (rho). It is defined as the ratio of the mass (m) of the given sample and the total volume (V) of the sample.
......equation (1)
According to the ideal gas law for ideal gas:
......equation (2)
Here, V is the volume of gas, P is the pressure of gas, T is the absolute temperature, R is Gas constant and n is the number of moles of gas
As we know,
The number of moles: 
where m is the given mass of gas and M is the molar mass of the gas
So equation (2) can be written as:

⇒ 
⇒
......equation (3)
Now from equation (1) and (3), we get
⇒ Density of an ideal gas:
⇒ <em>Density of an ideal gas: ρ ∝ molar mass of gas: M</em>
<u>Therefore, the density of the ideal gas is directly proportional to its molar mass. </u>
Polar will always have the higher boiling point because they have strong van der waal forces