Answer: x=-1
Step-by-step explanation:
the x value of the vertex = -b/2a if the equation is in "ax^2+bx+c" for
you are in luck
x value of the vertex = -4/4 = -1
the line of symmetry is a vertical line, and since it must pass through the vertex
line of symmetry: x=-1
Answer:
<u><em>−125a^(11)</em></u>
Step-by-step explanation:
<u><em>(−5a^(2)3a^(5) Then you solve</em></u>
<u><em>=−125a^(11)</em></u>
Answer:
1. x = 2
2. x = 61/25
Step-by-step explanation:
Solve for x:
5 (x - 2) - 3 (2 - x) = 0
-3 (2 - x) = 3 x - 6:
3 x - 6 + 5 (x - 2) = 0
5 (x - 2) = 5 x - 10:
5 x - 10 + 3 x - 6 = 0
Grouping like terms, 5 x + 3 x - 10 - 6 = (3 x + 5 x) + (-6 - 10):
(3 x + 5 x) + (-6 - 10) = 0
3 x + 5 x = 8 x:
8 x + (-6 - 10) = 0
-6 - 10 = -16:
8 x + -16 = 0
Add 16 to both sides:
8 x + (16 - 16) = 16
16 - 16 = 0:
8 x = 16
Divide both sides of 8 x = 16 by 8:
(8 x)/8 = 16/8
8/8 = 1:
x = 16/8
The gcd of 16 and 8 is 8, so 16/8 = (8×2)/(8×1) = 8/8×2 = 2:
Answer: x = 2
_____________________________
Solve for x:
Solve for x:
3 (2 x - 7) + (7 x + 2)/3 = 0
Put each term in 3 (2 x - 7) + (7 x + 2)/3 over the common denominator 3: 3 (2 x - 7) + (7 x + 2)/3 = (9 (2 x - 7))/3 + (7 x + 2)/3:
(9 (2 x - 7))/3 + (7 x + 2)/3 = 0
(9 (2 x - 7))/3 + (7 x + 2)/3 = (9 (2 x - 7) + (7 x + 2))/3:
(9 (2 x - 7) + 2 + 7 x)/3 = 0
9 (2 x - 7) = 18 x - 63:
(18 x - 63 + 7 x + 2)/3 = 0
Grouping like terms, 18 x + 7 x - 63 + 2 = (18 x + 7 x) + (2 - 63):
((18 x + 7 x) + (2 - 63))/3 = 0
18 x + 7 x = 25 x:
(25 x + (2 - 63))/3 = 0
2 - 63 = -61:
(25 x + -61)/3 = 0
Multiply both sides of (25 x - 61)/3 = 0 by 3:
(3 (25 x - 61))/3 = 3×0
(3 (25 x - 61))/3 = 3/3×(25 x - 61) = 25 x - 61:
25 x - 61 = 3×0
0×3 = 0:
25 x - 61 = 0
Add 61 to both sides:
25 x + (61 - 61) = 61
61 - 61 = 0:
25 x = 61
Divide both sides of 25 x = 61 by 25:
(25 x)/25 = 61/25
25/25 = 1:
Answer: x = 61/25
They are all cold, they're below freezing in both C and F, they're impossible temperatures in K, and from a math standpoint they have a mean of approximately 2.7 ish, the median is -2, the mode is nonexistent, you don't have enough data points to do quartiles, the max is -1 and the min is -5. I hope this helpful
Answer:
A. 16 m
B. At t = 2 and t = 6
C. 8 seconds
Step-by-step explanation:
Maximum height is at the vertex
(4,16). So maximum height is 16 m at t = 4
The rocket is at a height of 12m at two distinct times:
At 2 seconds and again at 6 seconds
The rocket is in air when the height is not zero, I.e between t=0 and t=8
8-0 = 8 seconds