The force that acts on all objects, all the time on Earth is gravitational force.
The force that surface exert on an object perpendicularly is normal reaction.
<h3>What force acts on all objects, all the time on Earth?</h3>
- Force due to gravity is gravitational pull on objects due to its position on earth's surface.
The force due to gravity on object's is calculated by applying Newton's second law of motion as follows;
F = mg
where;
- m is the mass of the object
- g is acceleration due to gravity
The force that surface exert on an object perpendicularly is normal reaction.
Thus, the force that acts on all objects, all the time on Earth is gravitational force.
Learn more about force of gravity here: brainly.com/question/2537310
Answer:
Lunar eclipse
Explanation:
Lunar eclipse occurs when Earth comes in between sun and Moon. The moon is either partially or fully blocked and the moon sighting appears to be black from earth since the light rays coming from sun are blocked by Earth. Lunar eclipse occurs only at full moon. The moon is aligned with the position of earth and sun so that they all form a straight line.
Answer:
a) 
b) infrared region
Explanation:
Photon energy is the "energy carried by a single photon. This amount of energy is directly proportional to the photon's electromagnetic frequency and is inversely proportional to the wavelength. If we have higher the photon's frequency then we have higher its energy. Equivalently, with longer the photon's wavelength, we have lower energy".
Part a
Is provide that the smallest amount of energy that is needed to dissociate a molecule of a material on this case 0.42eV. We know that the energy of the photon is equal to:

Where h is the Planck's Constant. By the other hand the know that
and if we solve for f we have:

If we replace the last equation into the E formula we got:

And if we solve for
we got:

Using the value of the constant
we have this:


Part b
If we see the figure attached, with the red arrow, the value for the wavelenght obtained from part a) is on the infrared region, since is in the order of 
the answer for 0.429m to mm is 429
The tension in the swing's chain at the bottom of the swing is 178.35 N.
The given parameters:
- Mass of the girl, m = 27 kg
- Speed of the girl, v = 3 m/s
- Radius of the circle, r = 4 m
The tension in the swing's chain at the bottom of the swing is calculated as follows;

Thus, the tension in the swing's chain at the bottom of the swing is 178.35 N.
Learn more about tension in vertical circle here: brainly.com/question/19904705