Answer:
Ice is the solid state of water, a normally liquid substance that freezes to the solid state at temperatures of 0 °C (32 °F) or lower and expands to the gaseous state at temperatures of 100 °C (212 °F) or higher.
Explanation:
Answer:
d = 120 [m]
Explanation:
In order to solve this problem, we must use the theorem of work and energy conservation. Where the energy in the final state (when the skater stops) is equal to the sum of the mechanical energy in the initial state plus the work done on the skater in the initial state.
The mechanical energy is equal to the sum of the potential energy plus the kinetic energy. As the track is horizontal there is no unevenness, in this way, there is no potential energy.
E₁ + W₁₋₂ = E₂
where:
E₁ = mechanical energy in the initial state [J] (units of Joules)
W₁₋₂ = work done between the states 1 and 2 [J]
E₂ = mechanical energy in the final state = 0
E₁ = Ek = kinetic energy [J]
E₁ = 0.5*m*v²
where:
m = mass = 60 [kg]
v = initial velocity = 12 [m/s]
Now, the work done is given by the product of the friction force by the distance. In this case, the work is negative because the friction force is acting in opposite direction to the movement of the skater.
W₁₋₂ = -f*d
where:
f = friction force = 36 [N]
d = distance [m]
Now we have:
0.5*m*v² - (f*d) = 0
0.5*60*(12)² - (36*d) = 0
4320 = 36*d
d = 120 [m]
Answer:
a)
b)E=0
c)
Explanation:
Given that
A point charge Q is placed at the center of a conducting spherical shell .Due to this - Q charge will induce on the inner sphere surface and +Q will induce on the outer sphere surface .
a) r < a
At a radius r ,from gauss theorem



b) a < r < b

The total induce in this surface = - Q+ Q =0

E = 0
c) r > b



Answer:
4360 Kgm/s
Explanation:
Applying,
Ft = M-M'................. Equation 1
Where F = force, t = time, M = Final momentum, M' = Initial momentum.
make M the subject of the equation
M = Ft+M'............ Equation 2
From the question,
Given: F = 4000 N, t = 0.9 seconds, M' = 400 kg-m/s
Substitute these values into equation 2
M = 4000+(0.9×400)
M = 4000+360
M = 4360 kgm/s
Hence the final momentum is 4360 kgm/s