1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bixtya [17]
4 years ago
7

The same track star runs the 100 meter dash forward in only 10.1 seconds. What is

Physics
1 answer:
Shtirlitz [24]4 years ago
7 0
V = d / t

V = 100m/ 10.1sec
V = 9.90 m/sec
You might be interested in
How do you solve e from the equation f=e/s
Andrej [43]
1738 Fetty wap bhsyfnd hdnchd hand hdnzudnusjd jdnshdkdndb hdkcnd
7 0
4 years ago
An aluminum bar 600mm long, with diameter 40mm, has a hole drilled in the center of the bar. The hole is 40mm in diameter and 10
s2008m [1.1K]

Answer:

<em>1.228 x </em>10^{-6}<em> mm </em>

<em></em>

Explanation:

diameter of aluminium bar D = 40 mm  

diameter of hole d = 30 mm

compressive Load F = 180 kN = 180 x 10^{3} N

modulus of elasticity E = 85 GN/m^2  = 85 x 10^{9} Pa

length of bar L = 600 mm

length of hole = 100 mm

true length of bar = 600 - 100 = 500 mm

area of the bar A = \frac{\pi D^{2} }{4} =  \frac{3.142* 40^{2} }{4} = 1256.8 mm^2

area of hole a = \frac{\pi(D^{2} - d^{2}) }{4} = \frac{3.142*(40^{2} - 30^{2})}{4} = 549.85 mm^2

Total contraction of the bar = \frac{F*L}{AE} + \frac{Fl}{aE}

total contraction = \frac{F}{E} * (\frac{L}{A} +\frac{l}{a})

==> \frac{180*10^{3}}{85*10^{9}} *( \frac{500}{1256.8} + \frac{100}{549.85}) = <em>1.228 x </em>10^{-6}<em> mm </em>

6 0
3 years ago
A 1 kg mass is attached to a spring with spring constant 7 Nt/m. What is the frequency of the simple harmonic motion? What is th
Scorpion4ik [409]

1. 0.42 Hz

The frequency of a simple harmonic motion for a spring is given by:

f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}

where

k = 7 N/m is the spring constant

m = 1 kg is the mass attached to the spring

Substituting these numbers into the formula, we find

f=\frac{1}{2\pi}\sqrt{\frac{7 N/m}{1 kg}}=0.42 Hz

2. 2.38 s

The period of the harmonic motion is equal to the reciprocal of the frequency:

T=\frac{1}{f}

where f = 0.42 Hz is the frequency. Substituting into the formula, we find

T=\frac{1}{0.42 Hz}=2.38 s

3. 0.4 m

The amplitude in a simple harmonic motion corresponds to the maximum displacement of the mass-spring system. In this case, the mass is initially displaced by 0.4 m: this means that during its oscillation later, the displacement cannot be larger than this value (otherwise energy conservation would be violated). Therefore, this represents the maximum displacement of the mass-spring system, so it corresponds to the amplitude.

4. 0.19 m

We can solve this part of the problem by using the law of conservation of energy. In fact:

- When the mass is released from equilibrium position, the compression/stretching of the spring is zero: x=0, so the elastic potential energy is zero, and all the mechanical energy of the system is just equal to the kinetic energy of the mass:

E=K=\frac{1}{2}mv^2

where m = 1 kg and v = 0.5 m/s is the initial velocity of the mass

- When the spring reaches the maximum compression/stretching (x=A=amplitude), the velocity of the system is zero, so the kinetic energy is zero, and all the mechanical energy is just elastic potential energy:

E=U=\frac{1}{2}kA^2

Since the total energy must be conserved, we have:

\frac{1}{2}mv^2 = \frac{1}{2}kA^2\\A=\sqrt{\frac{m}{k}}v=\sqrt{\frac{1 kg}{7 N/m}}(0.5 m/s)=0.19 m

5. Amplitude of the motion: 0.44 m

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}kA^2 is the mechanical energy of the system when x=A (maximum displacement)

Equalizing the two expressions, we can solve to find A, the amplitude:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}kA^2\\A=\sqrt{x_0^2+\frac{m}{k}v_0^2}=\sqrt{(0.4 m)^2+\frac{1 kg}{7 N/m}(0.5 m/s)^2}=0.44 m

6. Maximum velocity: 1.17 m/s

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}mv_{max}^2 is the mechanical energy of the system when x=0, which is when the system has maximum velocity, v_{max}

Equalizing the two expressions, we can solve to find v_{max}, the maximum velocity:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}mv_{max}^2\\v_{max}=\sqrt{\frac{k}{m}x_0^2+v_0^2}=\sqrt{\frac{7 N/m}{1 kg}(0.4 m)^2+(0.5 m/s)^2}=1.17 m/s m

4 0
3 years ago
Read 2 more answers
Why is it possible for a gas to take the shape of its container?
Sedaia [141]
I believe the answer is A

8 0
3 years ago
Read 2 more answers
When two or more capacitors are connected in series across a potential difference:
34kurt

Answer:

A) and B) are correct.

Explanation:

Let's take a look at the attached picture. Now

The total voltage across both capacitors is the same as the sum of the voltage from each device, that statement is true for any electrical device connected in series. So a) is TRUE

The equivalent capacitance is going to be: \frac{1}{C_{total}}=\frac{1}{C_1} +\frac{1}{C_2}

And that value can be mathematically proven that is always less than any of the values of each capacitor. So b is TRUE

And through both capacitors flow the same current, but the amount of charge depends on the value of the capacitors, so only could be the same if the capacitors are the same value. Otherwise, don't. C) not always, so FALSE

7 0
3 years ago
Other questions:
  • A person's height will increase from birth until about age 25, and it may decrease starting at about age 70. This is an example
    6·2 answers
  • A 10-kg dog is running with a speed of 5.0 m/s. what is the minimum work required to stop the dog in 2.40 s?
    7·1 answer
  • A rocket generates a net force (F) of 2,050,000 newtons, and the rocket’s mass (m) is 40,000 kilograms. Use the formula F = ma t
    8·2 answers
  • Estimate the acceleration due to gravity at the surface of Europa (one of the moons of Jupiter) given that its mass is 4.9×1022k
    12·1 answer
  • How much force does it take to accelerate a 3.50 kg mass from 3.00 m/s to 17.0 m/s in a time of 2.00 seconds?
    6·1 answer
  • What current in a solenoid 15-cm long wound with 100 turns would produce a magnetic field equal to that of the Earth, 5 cross ti
    9·1 answer
  • One clue we can observe that means a chemical reaction has occurred is the formation of light. What is one chemical reaction you
    7·1 answer
  • Characteristics of good thermometer
    11·1 answer
  • 4)What is the mass of an object weighing<br> 3,000N?
    5·2 answers
  • Waht is pascal law?<br>​
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!