Answer:
14523.55J
Explanation:
The work done by the jogger against gravity is given by the following equation;

where m is the mass, g is acceleration due to gravity taken as
and h is the height of the hill.
Since the length of the hill is 132m and it is inclined at 12 degrees to the horizontal, the height is thus given as follows;

Substituting this into equation (1) with all other necessary parameters, we obtain the following;

Answer:
7 m .
Explanation:
For destructive interference
Path difference = odd multiple of λ /2
Wave length of sound from each of A and B.
= speed / frequency
λ = 334 / 172 = 2 m
λ/2 = 1 m
If I am 1 m away from B , the path difference will be
8 - 1 = 7 m which is odd multiple of 1 or λ /2
So path difference becomes odd multiple of λ /2.
This is the condition of destructive interference.
So one meter is the closest distance which I can remain at so that i can hear destructive interference.
Answer :First part is what you learned so write what you learned then the other parts is The evidence that the universe is expanding comes with something called the red shift of light. Light travels to Earth from other galaxies. As the light from that galaxy gets closer to Earth, the distance between Earth and the galaxy increases, which causes the wavelength of that light to get longer.
Explanation:
Answer:
W = 735.75[J]
Explanation:
Work is defined as the product of force by distance. Therefore we can use the following equation.

where:
W = work [J] (units of Joules)
F = force [N] (units of Newtons)
d = distance = 3 [m]
But first, we must determine the force that is equal to the product of mass by gravity (weight of the body).
![F=m*g\\F=25*9.81\\F=245.25[N]](https://tex.z-dn.net/?f=F%3Dm%2Ag%5C%5CF%3D25%2A9.81%5C%5CF%3D245.25%5BN%5D)
![W=F*d\\W=245.25*3\\W=735.75[J]](https://tex.z-dn.net/?f=W%3DF%2Ad%5C%5CW%3D245.25%2A3%5C%5CW%3D735.75%5BJ%5D)
Answer:
They conduct thermal energy from inside the house and release it outside the house. ... It reduces the amount of thermal energy that is transferred from outside to inside the container