Answer:
V= 6.974 m/s
Explanation:
Component( box) weight acting parallel and down roof 88(sin39.0°)=55.4 N
Force of kinetic friction acting parallel and up roof = 18.0 N
Fnet force acting on tool box acting parallel and down roof
Fnet= 55.4 - 18.0
Fnet=37.4 N
acceleration of tool box down roof
a = 37.4(9.81)/88.0
a= 4.169 m/s²
d = 4.90 m
t = √2d/a
t= √2(4.90)/4.169
t= 1.662 s
V = at
V= 4.169(1.662)
V= 6.974 m/s
Answer:
<h2>
44 m/s</h2>
Explanation:
In this problem we are expected to calculate the velocity of Georges movements.
Given data
Total distance covered by George= 850+250= 1100 meters
Time taken by George to cover the total distance= 25 seconds
We know that velocity is, v= distance/ time
Therefore substituting our data into the expression for velocity we have
v= 1100/ 25= 44 m/s
Hence the velocity in m/s is 44
Answer:
16.8ohms
Explanation:
According to ohm's law which states that the current passing through a metallic conductor at constant temperature is directly proportional to the potential difference across its ends.
Mathematically, V = IRt where;
V is the voltage across the circuit
I is the current
R is the effective resistance
For a series connected circuit, same current but different voltage flows through the resistors.
If the initial current in a circuit is 19.3A,
V = 19.3R... (1)
When additional resistance of 7.4-Ω is added and current drops to 13.4A, our voltage in the circuit becomes;
V = 13.4(7.4+R)... (2)
Note that the initial resistance is added to the additional resistance because they are connected in series.
Equating the two value of the voltages i.e equation 1 and 2 to get the resistance in the original circuit we will have;
19.3R = 13.4(7.4+R)
19.3R = 99.16+13.4R
19.3R-13.4R = 99.16
5.9R = 99.16
R= 99.16/5.9
R = 16.8ohms
The resistance in the original circuit will be 16.8ohms
Answer:
26945.6 ft⋅lbf
Explanation:
Volume of Right Circular Cone = pi*(radius^2)*(height/3)
Pi*(4)*(5/3) = 20.94 ft^3
Density = Mass / Volume
Mass = Density*Volume
Mass = (40)*(20.94)
Mass = 837.6 lb
Work = Force*Height
Force = Mass*Acceleration
Acceleration will be gravitational acceleration
Work = (837.6)*(32.17)*(1)
Work = 26945.6 ft⋅lbf