Answer:
1.4 billion light years away
Explanation:
v = Recessional velocity = 30000 km/s[/tex]
= Hubble constant = 
D = Distance to the galaxy
According to Hubble's law

The galaxy is 1.4 billion light years away
Acceleration means speeding up, slowing down, or changing direction. The graph doesn't show anything about direction, so we just have to examine it for speeding up or slowing down ... any change of speed.
The y-axis of this graph IS speed. So the height of a point on the line is speed. If the line is going up or down, then speed is changing.
Sections a, c, and d are all going up or down. Section b is the only one where speed is not changing. So we can't be sure about b, because we don't know if the track may be curving ... the graph can't tell us that. But a, c, and d are DEFINITELY showing acceleration.
Answer:
b. 0.034
Explanation:
The heat transfer coefficient of a material (U-value) is equal to the reciprocal of its R-value, therefore:

where
R is the R-value of the material
For the insulator in this problem,
R = 29
Substituting into the equation, we find the heat transfer coefficient:

Answer:
There are no gaps in space between the photons as they travel. If you were to look at a wave then you'd come to a conclusion that indeed that there aren't any gaps unless they are specifically placed.The light from a distance star indeed spreads out and weakens as it travels, but this just reduces the wave strength and does not introduce gaps.