If net external force acting on the system is zero, momentum is conserved. That means, initial and final momentum are same → total momentum of the system is zero.
the answer is c I hope this helps
The British physicist Joseph John (J. J.) Thomson (1856–1940) performed a series of experiments in 1897 designed to study the nature of electric discharge in a high-vacuum cathode-ray tube, an area being investigated by many scientists at the time. Thomson's model showed the atom as a positively charged ball of matter with negatively changed electrons floating freely around inside of it. This model showed the atom having no structure. There are also no protons and neutrons in this model. Thomson knew that the atom had positively and negatively charges particles in it he just didn't know how they were arranged. <span>Today's model gives us a much clearer picture of the atom. There is a positively charged center of the atom that is denser than the rest of it called the nucelus. This dense center is made up of positively charged protons and neutrally charged neutrons. Around the outside of the nucleus the electrons are organized on rings. These electrons are arranged in a certain pattern that is the same for all atoms.</span>
Answer:
star
Explanation:
because that is what our sun is.
Answer:
29 seconds
Explanation:
First we have a constant speed of 12 m/s and the distance of 240 m, so to find the time we can use the formula:
distance = speed * time
240 = 12 * time1
time1 = 20 seconds
Then, the speed decreases at 2 m/s2 until it reaches 2 m/s. So to find this time, we use this formula:
Final speed = inicial speed + acceleration * time
2 = 12 - 2 * time2
2*time2 = 10
time2 = 5 seconds.
Then, the speed increases from 2 m/s to 22 m/s with an acceleration of 5 m/s2, so we have:
Final speed = inicial speed + acceleration * time
22 = 2 + 5 * time3
5*time3= 20
time3 = 4 seconds
The total time is:
Total time = time1 + time2 + time3 = 20 + 5 + 4 = 29 seconds