Answer: 2561.7 pounds
Explanation:
If we assume the total weight of an airplane (in pounds units) as a <u>linear function</u> of the amount of fuel in its tank (in gallons) and we make a Weight vs amount of fuel graph, which resulting slope is 5.7, we can use the slope equation of the line:
(1)
Where:
is the slope of the line
is the airplane weight with 51 gallons of fuel in its tank (assuming we chose the Y axis for the airplane weight in the graph)
is the fuel in airplane's tank for a total weigth of 2390.7 pounds (assuming we chose the X axis for the a,ount of fuel in the tank in the graph)
This means we already have one point of the graph, which coordinate is:

Rewritting (1):
(2)
As Y is a function of X:
(3)
Substituting the known values:
(4)
(5)
(6)
Now, evaluating this function when X=81 (talking about the 81 gallons of fuel in the tank):
(7)
(8) This means the weight of the plane when it has 81 gallons of fuel in its tank is 2561.7 pounds.
Answer:
The best-supported theory of our universe's origin centers on an event known as the big bang. This theory was born of the observation that other galaxies are moving away from our own at great speed in all directions, as if they had all been propelled by an ancient explosive force.
Explanation:
hope this helps tho i don't quite know what you mean
This is a perfect opportunity to stuff all that data into the general equation for the height of an object that has some initial height, and some initial velocity, when it is dropped into free fall.
H(t) = (H₀) + (v₀ T) + (1/2 a T²)
Height at any time 'T' after the drop =
(initial height) +
(initial velocity) x (T) +
(1/2) x (acceleration) x (T²) .
For the balloon problem ...
-- We have both directions involved here, so we have to define them:
Upward = the positive direction
Initial height = +150 m
Initial velocity = + 3 m/s
Downward = the negative direction
Acceleration (of gravity) = -9.8 m/s²
Height when the bag hits the ground = 0 .
H(t) = (H₀) + (v₀ T) + (1/2 a T²)
0 = (150m) + (3m/s T) + (1/2 x -9.8 m/s² x T²)
-4.9 T² + 3T + 150 = 0
Use the quadratic equation:
T = (-1/9.8) [ -3 plus or minus √(9 + 2940) ]
= (-1/9.8) [ -3 plus or minus 54.305 ]
= (-1/9.8) [ 51.305 or -57.305 ]
T = -5.235 seconds or 5.847 seconds .
(The first solution means that the path of the sandbag is part of
the same path that it would have had if it were launched from the
ground 5.235 seconds before it was actually dropped from balloon
while ascending.)
Concerning the maximum height ... I don't know right now any other
easy way to do that part without differentiating the big equation.
So I hope you've been introduced to a little bit of calculus.
H(t) = (H₀) + (v₀ T) + (1/2 a T²)
H'(t) = v₀ + a T
The extremes of 'H' (height) correspond to points where h'(t) = 0 .
Set v₀ + a T = 0
+3 - 9.8 T = 0
Add 9.8 to each side: 3 = 9.8 T
Divide each side by 9.8 : T = 0.306 second
That's the time after the drop when the bag reaches its max altitude.
Oh gosh ! I could have found that without differentiating.
- The bag is released while moving UP at 3 m/s .
- Gravity adds 9.8 m/s of downward speed to that every second.
So the bag reaches the top of its arc, runs out of gas, and starts
falling, after
(3 / 9.8) = 0.306 second .
At the beginning of that time, it's moving up at 3 m/s.
At the end of that time, it's moving with zero vertical speed).
Average speed during that 0.306 second = (1/2) (3 + 0) = 1.5 m/s .
Distance climbed during that time = (average speed) x (time)
= (1.5 m/s) x (0.306 sec)
= 0.459 meter (hardly any at all)
But it was already up there at 150 m when it was released.
It climbs an additional 0.459 meter, topping out at 150.459 m,
then turns and begins to plummet earthward, where it plummets
to its ultimate final 'plop' precisely 5.847 seconds after its release.
We can only hope and pray that there's nobody standing at
Ground Zero at the instant of the plop.
I would indeed be remiss if were to neglect, in conclusion,
to express my profound gratitude for the bounty of 5 points
that I shall reap from this work. The moldy crust and tepid
cloudy water have been delicious, and will not soon be forgotten.
Pressure at a given surface is given as ratio of normal force and area
so here force due to heel of the shoes is given as 80 N
and the area of the heel is given as 16 cm^2
so we can say

here we have
F = 80 N



so pressure at the surface due to its heel will be 5 * 10^4 N/m^2