Answer:
It is given that , Parallelogram ABCD is dilated to form parallelogram EFGH.
When Dilation of a geometrical shape takes place, the two→→image and Pre image will be Similar.
Parallelogram ABCD ~ Parallelogram EFGH
Since Similar shapes have , Proportional side Lengths as well as length of their Diagonal will be proportional.

So, Segment FG will be proportional to Segment BC.
The difference quotient of the function that has been presented to us will turn out to be 5.
<h3>How can I calculate the quotient of differences?</h3>
In this step, we wish to determine the difference quotient for the function that was supplied.
To begin, keep in mind that the difference quotient may be calculated by:
Lim h->0 
Now, for the purpose of the function, we need this:
Then we will have:

j(x) = 5x - 3
Then the following will be true:
Therefore, 5 is the value of the difference quotient for j(x) is %
Read the following if you are interested in finding out more about difference quotients:
brainly.com/question/15166834
#SPJ1
228.5 I believe. 14/49 is 3.5. 18+7 is 25x9 is 225. 225+3.5 would be 228.5
Answer:
![\boxed{5 \cdot \sqrt{2} \cdot \sqrt[6]{5} }](https://tex.z-dn.net/?f=%5Cboxed%7B5%20%5Ccdot%20%5Csqrt%7B2%7D%20%20%5Ccdot%20%5Csqrt%5B6%5D%7B5%7D%20%7D)
Step-by-step explanation:
![\sqrt[3]{250} \cdot \sqrt{\sqrt[3]{10} }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B250%7D%20%5Ccdot%20%5Csqrt%7B%5Csqrt%5B3%5D%7B10%7D%20%7D)
![\sqrt{\sqrt[3]{10} } \implies (10^\frac{1}{3} )^\frac{1}{2} =10^\frac{1}{6} =\sqrt[6]{10}](https://tex.z-dn.net/?f=%5Csqrt%7B%5Csqrt%5B3%5D%7B10%7D%20%7D%20%5Cimplies%20%2810%5E%5Cfrac%7B1%7D%7B3%7D%20%29%5E%5Cfrac%7B1%7D%7B2%7D%20%3D10%5E%5Cfrac%7B1%7D%7B6%7D%20%3D%5Csqrt%5B6%5D%7B10%7D)
![\therefore \sqrt{\sqrt[3]{10} }=\sqrt[6]{10}](https://tex.z-dn.net/?f=%5Ctherefore%20%5Csqrt%7B%5Csqrt%5B3%5D%7B10%7D%20%7D%3D%5Csqrt%5B6%5D%7B10%7D)
![\text{Solving }\sqrt[3]{250} \cdot \sqrt{\sqrt[3]{10} }](https://tex.z-dn.net/?f=%5Ctext%7BSolving%20%7D%5Csqrt%5B3%5D%7B250%7D%20%5Ccdot%20%5Csqrt%7B%5Csqrt%5B3%5D%7B10%7D%20%7D)

![\sqrt[3]{250}=\sqrt[3]{2\cdot 5^3}=5 \sqrt[3]{2}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B250%7D%3D%5Csqrt%5B3%5D%7B2%5Ccdot%205%5E3%7D%3D5%20%20%5Csqrt%5B3%5D%7B2%7D)
Once
![\sqrt[6]{2} \cdot \sqrt[6]{5} = \sqrt[6]{10}](https://tex.z-dn.net/?f=%5Csqrt%5B6%5D%7B2%7D%20%20%5Ccdot%20%5Csqrt%5B6%5D%7B5%7D%20%3D%20%5Csqrt%5B6%5D%7B10%7D)
We have
![5 \sqrt[3]{2} \cdot \sqrt[6]{2} \cdot \sqrt[6]{5}](https://tex.z-dn.net/?f=5%20%20%5Csqrt%5B3%5D%7B2%7D%20%5Ccdot%20%5Csqrt%5B6%5D%7B2%7D%20%20%5Ccdot%20%5Csqrt%5B6%5D%7B5%7D)
We can proceed considering the common base of exponentials
![\sqrt[3]{2} \cdot \sqrt[6]{2} = 2^{\frac{1}{3}} \cdot 2^{\frac{1}{6} } = 2^{\frac{3}{6} } = 2^{\frac{1}{2} }=\sqrt{2}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2%7D%20%20%5Ccdot%20%5Csqrt%5B6%5D%7B2%7D%20%20%3D%20%202%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%20%5Ccdot%20%202%5E%7B%5Cfrac%7B1%7D%7B6%7D%20%7D%20%20%3D%202%5E%7B%5Cfrac%7B3%7D%7B6%7D%20%7D%20%3D%202%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%3D%5Csqrt%7B2%7D)
Therefore,
![5 \sqrt[3]{2} \cdot \sqrt[6]{2} \cdot \sqrt[6]{5} = 5 \cdot \sqrt{2} \cdot \sqrt[6]{5}](https://tex.z-dn.net/?f=5%20%20%5Csqrt%5B3%5D%7B2%7D%20%5Ccdot%20%5Csqrt%5B6%5D%7B2%7D%20%20%5Ccdot%20%5Csqrt%5B6%5D%7B5%7D%20%3D%205%20%5Ccdot%20%5Csqrt%7B2%7D%20%20%5Ccdot%20%5Csqrt%5B6%5D%7B5%7D)
hope it helps you and plz mark me brilliantest
Step-by-step explanation:
m<2