Hello!
To find the circumference of a circle, use the formula: C = 2πr. Since the radius is given, we can substitute that into the formula.
C = 2(36)π
C = 72π
Therefore, the circumference of the circle is 72π inches.
2(3x + 4) / 2(2x + 2)
Cancel the factored 2s
3x + 4 / 2x + 2
You may need to further factor the denominator, depending on the teacher.
3x + 4 / 2(x + 1)
Answer:
Part A
The bearing of the point 'R' from 'S' is 225°
Part B
The bearing from R to Q is approximately 293.2°
Step-by-step explanation:
The location of the point 'Q' = 35 km due East of P
The location of the point 'S' = 15 km due West of P
The location of the 'R' = 15 km due south of 'P'
Part A
To work out the distance from 'R' to 'S', we note that the points 'R', 'S', and 'P' form a right triangle, therefore, given that the legs RP and SP are at right angles (point 'S' is due west and point 'R' is due south), we have that the side RS is the hypotenuse side and ∠RPS = 90° and given that
=
, the right triangle ΔRPS is an isosceles right triangle
∴ ∠PRS = ∠PSR = 45°
The bearing of the point 'R' from 'S' measured from the north of 'R' = 180° + 45° = 225°
Part B
∠PRQ = arctan(35/15) ≈ 66.8°
Therefore the bearing from R to Q = 270 + 90 - 66.8 ≈ 293.2°
<span>Simplify and you will get -111</span>