1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zubka84 [21]
3 years ago
5

BRAINLIESSTTTT ASAP !!!!!!!!!! 20 pointssss

Mathematics
1 answer:
Mars2501 [29]3 years ago
7 0
Answers:  
_____________________________________________________
   Part A)  " (3x + 4) " units  . 
_____________________________________________________
   Part B)  "The dimensions of the rectangle are:

                             " (4x + 5y) " units ;  <u>AND</u>:  " (4x − 5y)"  units."
_____________________________________________________

Explanation for  Part A):
_____________________________________________________

Since each side length of a square is the same; 
   
    Area = Length * width = L * w ;  L = w  = s = s ;

      in which:  " s = side length" ;

So, the Area of a square, "A"  = L * w = s * s = s² ;

{<u>Note</u>:  A "square" is a rectangle with 4 (four) equal sides.}.

→  Each side length, "s", of a square is equal.

Given:  s² = "(9x² + 24x + 16)" square units ;

Find "s" by factoring: "(9x² + 24x + 16)" completely:

   →  " 9x² + 24x + 16 ";

Factor by "breaking into groups" :

"(9x² + 24x + 16)"  = 

    →  "(9x² + 12x) (12x + 16)" ;
_______________________________________________________

Given:   " (9x² + 24x + 16) " ; 
_______________________________________________________
Let us start with the term:
_______________________________________________________

" (9x² + 12x) " ; 

    →  Factor out a "3x" ;  → as follows:
_______________________________________

    → " 3x (3x + 4) " ; 

Then, take the term:
_______________________________________
    → " (12x + 16) " ;

And factor out a "4" ;   →  as follows:
_______________________________________

    → " 4 (3x + 4) " 
_______________________________________
We have:

" 9x² + 24x + 16 " ;

    =  " 3x (3x + 4)  +  4(3x + 4) " ;
_______________________________________
Now, notice the term:  "(3x + 4)" ; 

We can "factor out" this term:

3x (3x + 4)  +  4(3x + 4)  = 

     →  " (3x + 4) (3x + 4) " .  → which is the fully factored form of:

                                                   " 9x² + 24x + 16 "  ; 
____________________________________________________
     →  Or; write:  "  (3x + 4) (3x + 4)" ; as:  " (3x + 4)² " .
____________________________________________________
     →  So,  "s² = 9x² + 24x + 16 " ; 

Rewrite as:  " s² = (3x + 4)² " .

     →  Solve for the "positive value of "s" ; 

     →  {since the "side length of a square" cannot be a "negative" value.}.
____________________________________________________
     →  Take the "positive square root of EACH SIDE of the equation; 
              to isolate "s" on one side of the equation; & to solve for "s" ;

     →  ⁺√(s²)  =  ⁺√[(3x + 4)²]   '

To get:

     →  s  = " (3x + 4)" units .
_______________________________________________________

Part A):  The answer is:  "(3x + 4)" units.
____________________________________________________

Explanation for Part B):

_________________________________________________________<span>

The area, "A" of a rectangle is:

    A = L * w ;  

 in which "A" is the "area" of the rectangle;
                "L" is the "length" of the rectangle; 
                "w" is the "width" of the rectangle; 
_______________________________________________________
  Given:  " A = </span>(16x² − 25y²) square units" ;  
   
       →  We are asked to find the dimensions, "L" & "w" ;
       →  by factoring the given "area" expression completely:
____________________________________________________
  → Factor:  " (16x² − 25y²) square units " completely '

Note that:  "16" and: "25" are both "perfect squares" ;
      
We can rewrite: " (16x² − 25y²) "  ;   as:

       =   " (4²x²)  −  (5²y²) " ; and further rewrite the expression:
________________________________________________________
Note:  
________________________________________________________
" (16x²) " ;  can be written as:  "(4x)² " ;

 ↔ " (4x)²  =  "(4²)(x²)" = 16x² "


Note:  The following property of exponents:

         →  (xy)ⁿ = xⁿ yⁿ ;    →  As such:  " 16x² = (4²x²) = (4x)² " . 
_______________________________________________________
Note:
_______________________________________________________

     →   " (25x²) " ;  can be written as:  " (5x)² " ; 

        ↔   "( 5x)²  =  "(5²)(x²)" = 25x² " ; 

Note:  The following property of exponents:

         →  (xy)ⁿ = xⁿ yⁿ ;    →  As such:  " 25x² = (5²x²) = (5x)² " . 
______________________________________________________

→  So, we can rewrite:  " (16x² − 25y²) " ;  

as:  " (4x)² − (5y)² " ;   
 
    → {Note:  We substitute: "(4x)² "  for "(16x²)" ; & "(5y)² "  for "(25y²)" .} . ; 
_______________________________________________________
→  We have:  " (4x)² − (5y)² " ;

→  Note that we are asked to "factor completely" ; 

→  Note that:  " x² − y² = (x + y) (x − y) " ;

      → {This property is known as the "<u>difference of squares</u>".}.

→ As such:  " (4x)² − (5y)² " = " (4x + 5y) (4x − 5y) " .
_______________________________________________________
Part B):  The answer is:  "The dimensions of the rectangle are:

                              " (4x + 5y) " units ;  AND:  " (4x − 5y)"  units."
_______________________________________________________
You might be interested in
<img src="https://tex.z-dn.net/?f=y%27%3D%20%5Cfrac%7B1%7D%7B6%7D%20x%281-%20y%5E%7B2%7D%20%29" id="TexFormula1" title="y'= \fra
svetlana [45]
\dfrac{\mathrm dy}{\mathrm dx}=\dfrac16x(1-y^2)
\displaystyle\int\frac{\mathrm dy}{1-y^2}=\frac16\int x\,\mathrm dx
\dfrac12\ln|1+y|-\dfrac12\ln|1-y|=\dfrac1{12}x^2+C
\ln\left|\dfrac{1+y}{1-y}\right|=\dfrac16x^2+C
\dfrac{1+y}{1-y}=e^{x^2/6+C}
-1+\dfrac2{1-y}=Ce^{x^2/6}
y=1-\dfrac2{1+Ce^{x^2/6}}

Given that y(0)=7, we get

7=1-\dfrac2{1+Ce^0}\implies C=-\dfrac43

so the particular solution is

y=1-\dfrac2{1-\frac43e^{x^2/6}}
8 0
4 years ago
a Put the following equation of a line into slope-intercept form, simplifying all fractions. x + 3y = -24​
Alex73 [517]
Here’s the answer to your question.

4 0
3 years ago
Read 2 more answers
Four pounds of apples cost 3.88. what is the price per pound
Novay_Z [31]

Answer:

0.97 cents

Step-by-step explanation:

4/3.88=0.97

price per pound=0.97 cents

BRAINLIEST APPRECIATED!

HOPE YOU ARE HAVING A GOOD DAY!

3 0
4 years ago
The ordered pair D (-4,-2) has been plotted for you. If you reflected coordinate d over the x-axis, which point from part A woul
Serjik [45]
A= (-4,2)

The x value (-4) stays the same when reflected over the x-axis, so only the y-value gets reflected and therefore changed.
The resultant coordinate is (-4,2)
6 0
4 years ago
The diagram shows a triangle on top of a rectangle. The combined area of the triangle and rectangle is 108 ft2
podryga [215]

Answer:

6 ft

Step-by-step explanation:

A=1/2bh. To find the area of the triangle, we subtract the area of the rectangle from the total. Which would be 108 - (12x6) = 36. Now we have the area. So, 36 = 1/2bh. "b", the base is 12. So we solve for h. h = (36x2)/12 or h = 36/6, which both equal 6.

3 0
3 years ago
Other questions:
  • Find the indicated coefficients of the power series solution about x=0 of the differential equation
    14·1 answer
  • Write the polynomial as a product: p^2q+r^2–pqr–pr<br> Thanks so much! Love you all who help!
    12·1 answer
  • The DVD player shows the time of day as 1:43.
    15·1 answer
  • Brianna wants to buy a digital camera for a photography class. One store offers the camera for $47 down and a payment plan of $2
    13·2 answers
  • 3. Hank estimated the width of the door to his classroom in feet. What is reasonable estimate?
    6·2 answers
  • Please help me will mark brainiest
    9·1 answer
  • NO websites or fake links, inappropriate comments, wired, or not helping comments our your reported and show me your steps to ea
    12·1 answer
  • If it is completely impossible to put a contract in writing, which of the following would be the best substitute?
    8·1 answer
  • Help me with this please real quick
    12·2 answers
  • Please Please Help Me. Put the following equation of a line into slope-intercept form, simplifying all fractions.
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!