1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zubka84 [21]
3 years ago
5

BRAINLIESSTTTT ASAP !!!!!!!!!! 20 pointssss

Mathematics
1 answer:
Mars2501 [29]3 years ago
7 0
Answers:  
_____________________________________________________
   Part A)  " (3x + 4) " units  . 
_____________________________________________________
   Part B)  "The dimensions of the rectangle are:

                             " (4x + 5y) " units ;  <u>AND</u>:  " (4x − 5y)"  units."
_____________________________________________________

Explanation for  Part A):
_____________________________________________________

Since each side length of a square is the same; 
   
    Area = Length * width = L * w ;  L = w  = s = s ;

      in which:  " s = side length" ;

So, the Area of a square, "A"  = L * w = s * s = s² ;

{<u>Note</u>:  A "square" is a rectangle with 4 (four) equal sides.}.

→  Each side length, "s", of a square is equal.

Given:  s² = "(9x² + 24x + 16)" square units ;

Find "s" by factoring: "(9x² + 24x + 16)" completely:

   →  " 9x² + 24x + 16 ";

Factor by "breaking into groups" :

"(9x² + 24x + 16)"  = 

    →  "(9x² + 12x) (12x + 16)" ;
_______________________________________________________

Given:   " (9x² + 24x + 16) " ; 
_______________________________________________________
Let us start with the term:
_______________________________________________________

" (9x² + 12x) " ; 

    →  Factor out a "3x" ;  → as follows:
_______________________________________

    → " 3x (3x + 4) " ; 

Then, take the term:
_______________________________________
    → " (12x + 16) " ;

And factor out a "4" ;   →  as follows:
_______________________________________

    → " 4 (3x + 4) " 
_______________________________________
We have:

" 9x² + 24x + 16 " ;

    =  " 3x (3x + 4)  +  4(3x + 4) " ;
_______________________________________
Now, notice the term:  "(3x + 4)" ; 

We can "factor out" this term:

3x (3x + 4)  +  4(3x + 4)  = 

     →  " (3x + 4) (3x + 4) " .  → which is the fully factored form of:

                                                   " 9x² + 24x + 16 "  ; 
____________________________________________________
     →  Or; write:  "  (3x + 4) (3x + 4)" ; as:  " (3x + 4)² " .
____________________________________________________
     →  So,  "s² = 9x² + 24x + 16 " ; 

Rewrite as:  " s² = (3x + 4)² " .

     →  Solve for the "positive value of "s" ; 

     →  {since the "side length of a square" cannot be a "negative" value.}.
____________________________________________________
     →  Take the "positive square root of EACH SIDE of the equation; 
              to isolate "s" on one side of the equation; & to solve for "s" ;

     →  ⁺√(s²)  =  ⁺√[(3x + 4)²]   '

To get:

     →  s  = " (3x + 4)" units .
_______________________________________________________

Part A):  The answer is:  "(3x + 4)" units.
____________________________________________________

Explanation for Part B):

_________________________________________________________<span>

The area, "A" of a rectangle is:

    A = L * w ;  

 in which "A" is the "area" of the rectangle;
                "L" is the "length" of the rectangle; 
                "w" is the "width" of the rectangle; 
_______________________________________________________
  Given:  " A = </span>(16x² − 25y²) square units" ;  
   
       →  We are asked to find the dimensions, "L" & "w" ;
       →  by factoring the given "area" expression completely:
____________________________________________________
  → Factor:  " (16x² − 25y²) square units " completely '

Note that:  "16" and: "25" are both "perfect squares" ;
      
We can rewrite: " (16x² − 25y²) "  ;   as:

       =   " (4²x²)  −  (5²y²) " ; and further rewrite the expression:
________________________________________________________
Note:  
________________________________________________________
" (16x²) " ;  can be written as:  "(4x)² " ;

 ↔ " (4x)²  =  "(4²)(x²)" = 16x² "


Note:  The following property of exponents:

         →  (xy)ⁿ = xⁿ yⁿ ;    →  As such:  " 16x² = (4²x²) = (4x)² " . 
_______________________________________________________
Note:
_______________________________________________________

     →   " (25x²) " ;  can be written as:  " (5x)² " ; 

        ↔   "( 5x)²  =  "(5²)(x²)" = 25x² " ; 

Note:  The following property of exponents:

         →  (xy)ⁿ = xⁿ yⁿ ;    →  As such:  " 25x² = (5²x²) = (5x)² " . 
______________________________________________________

→  So, we can rewrite:  " (16x² − 25y²) " ;  

as:  " (4x)² − (5y)² " ;   
 
    → {Note:  We substitute: "(4x)² "  for "(16x²)" ; & "(5y)² "  for "(25y²)" .} . ; 
_______________________________________________________
→  We have:  " (4x)² − (5y)² " ;

→  Note that we are asked to "factor completely" ; 

→  Note that:  " x² − y² = (x + y) (x − y) " ;

      → {This property is known as the "<u>difference of squares</u>".}.

→ As such:  " (4x)² − (5y)² " = " (4x + 5y) (4x − 5y) " .
_______________________________________________________
Part B):  The answer is:  "The dimensions of the rectangle are:

                              " (4x + 5y) " units ;  AND:  " (4x − 5y)"  units."
_______________________________________________________
You might be interested in
How do i do part a) and b)?
Anarel [89]
6,12,24,48,96... when we multiply by 2
-6,12,-24,48,-96.... when we multiply by -2
a)   q can be 24 or -24
b)p/r=6/96 =-6/-96= 2/32=1/16
c)  a(n)=6*2^(n-1)
386=6*2^(n-1),   386/6=2^(n-1), 64,333(3)=2^(n-1), 
we will not be able to find whole number n for number 386, so 386 is not a term in this sequence, because it does not follow the rule of this sequence

6 0
3 years ago
A function, ƒ(x), has domain 0 &lt; x &lt; 12 and range –8 &lt; ƒ(x) &lt; 4.
icang [17]

Answer:

2, 3, and 5

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
A salesperson earns a 45% commission and has a
Alborosie

Answer:

880 times 0.45 equals 396 as his/her commissioner fee

Step-by-step explanation:

3 0
3 years ago
How far is 1000 meters in miles?
grin007 [14]
1mile=1609.344meters\Rightarrow1m=\frac{1}{1609.344}mi\\\\therefore\\\\1000m=1000\cdot\frac{1}{1609.344}mi=\frac{1000}{1609.344}mi=\frac{1,000,000}{1609344}mi\approx0.62mi\\\\Answer:\boxed{1000m\approx0.62mi}
8 0
3 years ago
Will give brainliest!!! <br><br> A. 2<br> B. 3<br> C. 4<br> D. 5
masha68 [24]

Answer:

a. 2

Step-by-step explanation:

4 0
3 years ago
Other questions:
  • A statue is mounted on top of a 21 foot hill. From the base of the hill to where you are standing is 57feet and the statue subte
    6·1 answer
  • Please help, showing work is not necessary but appreciated.<br> Find the sum.
    11·2 answers
  • Emily is 41 years old. Colin is 10 years older than Emily. Dan is 15 years younger than Emily. What is the total of their combin
    8·2 answers
  • Select the correct answer.<br> Which of these is not a key feature of the function
    8·1 answer
  • One state lottery has 900 prizes of $1; 145 prizes of $10; 30 prizes of $60; 5 prizes of $325; 2 prizes of $1,110; and 1 prize o
    11·1 answer
  • 3.The snow starts at a depth of 10 inches and melts to 2 inches over the span of 4 hours. Determine the rate of change over the
    6·1 answer
  • I NEEDDD HELPPPP ASAPPPP ITS URGENTTT!!!!
    9·1 answer
  • What is the scale factor from AABC to ADEF?
    13·1 answer
  • 70 PTS AND BRAINLlST , ASAP . question is in the picture and is also multiple choice only answer if you know your Correct , than
    14·2 answers
  • Mrs. Cashmore bought a large melon. She cut a piece that weighed 1 1/8 pounds and gave it to her neighbor. The remaining piece o
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!