Hi there!
This collision is an example of an inelastic collision since kinetic energy is lost from the collision.
We can represent this using the conservation of momentum formula:
m1v1 + m2v1 = m1vf + m2vf
Where:
m1 = blue ball
m2 = green ball
We know that the final velocity of the blue ball is 0, so:
m1v1 + m2v1 = m2vf
Rearrange to solve for the speed of the green ball:
(m1v1 + m2v1)/m2 = vf
Plug in given values:
((0.15 · 3) + (0.15 · 2)) / 0.15 = 5 m/s
<span>First draw a free-body diagram. Torque T = Force F x Distance d where force is the component of gravitational force g and d is the lever arm distance to the pivot point. Since the pivot point is at the back tire we subtract that from the length of the car resulting in d = 1.12 - 0.40 = 0.72 meters = d. We are interested in the perpendicular component of the force exerted on the car jack so use sin 8 degrees then T=1130 kg x 9.81 m/s^2 x sin(8 degrees) x0.72 m = 1,110.80 Newton-meters</span>
2,000 j(apex)
i hope this was right