Answer:
2.59 T
Explanation:
Parameters given:
Current flowing through the wire, I = 29 A
Angle between the magnetic field and wire, θ = 90°
Magnetic force, F = 2.25 N
Length of wire, L = 3 cm = 0.03 m
The magnetic force, F, is related to the magnetic field, B, by the equation below:
F = I * L * B * sinθ
Inputting the given parameters:
2.25 = 29 * 0.03 * B * sin90
2.25 = 0.87 * B
=> B = 2.25/0.87
B = 2.59 T
The magnetic field strength between the poles is 2.59 T
<h2>Sorry, But I don't know!!</h2>
Answer:
Explanation:
On both sides of the film , the mediums have lower refractive index.
for interfering pattern from above , for constructive interference of reflected wave from both sides of the film , the condition is
2μt = ( 2n +1 ) λ / 2
μ is refractive index of film ,t is thickness of film λ is wavelength of light
n is order of fringe
for minimum thickness
n = 0
2μt = λ / 2
t = λ / 4μ
= 670 / 1.75 x 4
= 95.71 nm .
Answer:
Part a)

Part B)

Part C)

Explanation:
Part a)
Magnetic field due to a long ideal solenoid is given by

n = number of turns per unit length



now we know that magnetic field due to solenoid is


Now magnetic flux due to this magnetic field is given by




Part B)
Now for mutual inductance we know that




now we have


Part C)
As we know that induced EMF is given as


