1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
likoan [24]
3 years ago
5

Find the mean of the data summarized in the given frequency distribution. Compare the computed mean to the actual mean of 47.3 m

iles per hour.
Mathematics
1 answer:
Marta_Voda [28]3 years ago
6 0

Answer:

\bar X = \frac{2276}{48}=47.417

If we compare this value with the 47.3 proposed we have the following error

Error = \frac{|Actual-real|}{real}*100 = \frac{|47.417-47.3|}{47.3}*100 =0.247\%

The computed mean is close to the actual mean because the difference between the means is less than 5%.  

Step-by-step explanation:

Assuming the following dataset:

Speed   42-45  46-49  50-53  54-57  58-61

Freq.         21        15        6           4          2

And we are interested in find the mean, since we have grouped data the formula for the mean is given by:

\bar X = \frac{\sum_{i=1}^n x_i f_i}{\sum_{i=1}^n f_i}

And is useful construct a table like this one:

Speed     Freq    Midpoint   Freq*Midpoint

42-45       21            43.5       913.5

46-49       15            47.5        712.5

50-53       6             51.5         309

54-57        4            55.5         222

58-61        2             59.5        119

Total       48                           2276

And the mean is given by:

\bar X = \frac{2276}{48}=47.417

If we compare this value with the 47.3 proposed we have the following error

Error = \frac{|Actual-real|}{real}*100 = \frac{|47.417-47.3|}{47.3}*100 =0.247\%

The computed mean is close to the actual mean because the difference between the means is less than 5%.  

You might be interested in
Helpppppppppppppooopp
lora16 [44]

Answer:

I can't see clearly

Step-by-step explanation:

5 0
3 years ago
Solve and graph the inequality |5 – v| < 6.
Jet001 [13]
5 - v < 6, 5 - v >= 0

-5 + v < 6, 5 - v < 0

1) - v < 6 -5 (move 5 to the right side and then multiply by -1 both sides of the inequality)
v > -1 (don't forget that here v <= 5)

2) v < 6 + 5 (move -5 to the right side)
v < 11 (here v should be more than 5)

so from 1) you get that v is from -1 to 5 inclusive (-1;5]
and from 2) you get that v is from 5 to 11 (5;11)

so by adding up results from 1) and 2) you get v is (-1; 11)

answer: (-1; 11)

3 0
3 years ago
Read 2 more answers
Help with num 3 please. thanks​
Alja [10]

Answer:

a)  \displaystyle \frac{dy}{dx} \bigg| \limits_{x = 0} = -1

b)  \displaystyle \frac{dy}{dx} \bigg| \limits_{x = \frac{\pi}{2}} = -1

General Formulas and Concepts:

<u>Pre-Calculus</u>

  • Unit Circle

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Trigonometric Differentiation

Logarithmic Differentiation

Step-by-step explanation:

a)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = ln \bigg( \frac{1 - x}{\sqrt{1 + x^2}} \bigg)

<u>Step 2: Differentiate</u>

  1. Logarithmic Differentiation [Chain Rule]:                                                     \displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 - x}{\sqrt{1 + x^2}}} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]
  2. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]
  3. Quotient Rule:                                                                                               \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{(1 - x)'\sqrt{1 + x^2} - (1 - x)(\sqrt{1 + x^2})'}{(\sqrt{1 + x^2})^2}
  4. Basic Power Rule [Chain Rule]:                                                                     \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{-\sqrt{1 + x^2} - (1 - x)(\frac{x}{\sqrt{x^2 + 1}})}{(\sqrt{1 + x^2})^2}
  5. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \bigg( \frac{x(x - 1)}{(x^2 + 1)^\bigg{\frac{3}{2}}} - \frac{1}{\sqrt{x^2 + 1}} \bigg)
  6. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{x + 1}{(x - 1)(x^2 + 1)}

<u>Step 3: Find</u>

  1. Substitute in <em>x</em> = 0 [Derivative]:                                                                     \displaystyle \frac{dy}{dx} \bigg| \limit_{x = 0} = \frac{0 + 1}{(0 - 1)(0^2 + 1)}
  2. Evaluate:                                                                                                         \displaystyle \frac{dy}{dx} \bigg| \limits_{x = 0} = -1

b)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = ln \bigg( \frac{1 + sinx}{1 - cosx} \bigg)

<u>Step 2: Differentiate</u>

  1. Logarithmic Differentiation [Chain Rule]:                                                     \displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 + sinx}{1 - cosx}} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]
  2. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]
  3. Quotient Rule:                                                                                               \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{(1 + sinx)'(1 - cosx) - (1 + sinx)(1 - cosx)'}{(1 - cosx)^2}
  4. Trigonometric Differentiation:                                                                       \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{cos(x)(1 - cosx) - sin(x)(1 + sinx)}{(1 - cosx)^2}
  5. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - sin(x) - 1]}{[sin(x) + 1][cos(x) - 1]}

<u>Step 3: Find</u>

  1. Substitute in <em>x</em> = π/2 [Derivative]:                                                                 \displaystyle \frac{dy}{dx} \bigg| \limit_{x = \frac{\pi}{2}} = \frac{-[cos(\frac{\pi}{2}) - sin(\frac{\pi}{2}) - 1]}{[sin(\frac{\pi}{2}) + 1][cos(\frac{\pi}{2}) - 1]}
  2. Evaluate [Unit Circle]:                                                                                   \displaystyle \frac{dy}{dx} \bigg| \limit_{x = \frac{\pi}{2}} = -1

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

4 0
3 years ago
“Eighteen is equal to the product of a number (n) and 9.”
gregori [183]

Answer:

n=2

Step-by-step explanation:

Create an equation.

9n=18

Divide 9 from both sides.

9n/9=18/9

n=2

Hope this helps!

4 0
2 years ago
Read 2 more answers
What is the equation of the axis of symmetry for the parabola y=1/2(x-3)^2+5
Rus_ich [418]

The general vertex form equation of the parabola is

y=a(x-h)^2+k

The Axis of Symmetry is given by

x=h

For the given equation the Equation of the Axis of symmetry for the parabola y=1/2(x-3)^2+5 as x=3.

5 0
3 years ago
Other questions:
  • Please someone help me..
    7·2 answers
  • The function T(h) = -15 + 3h represents the outside temperature (in degrees Fahrenheit) of Unalakleet, Alaska, where h represent
    14·1 answer
  • An item is regularly priced at $30 . it is on sale for 60% off the regular price. how much (in dollars) is discounted from the r
    13·1 answer
  • The Mendoza family is shopping for a new laptop computer. They will make their decision based on size and brand. The family made
    9·2 answers
  • Can someone please answer? will give brainliest.
    8·2 answers
  • Please help ASAP!!!
    6·1 answer
  • 5. Slope is -1 and passes through the point (2,4)<br> Slope intercept form
    15·1 answer
  • find the coordinates of each point after the described reflection. give the distance between each point and its reflection r(-5,
    14·1 answer
  • Z varies directly with the product of x and y, when<br> x=2,y=0.5, z=4, so the function is z=
    10·1 answer
  • Three cans of cat food cost $5.00 how muck will carol spend on 60 worth of cat food
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!