First, we need to get the molar mass of:
KClO3 = 39.1 + 35.5 + 3*16 = 122.6 g/mol
KCl =39.1 + 35.5 = 74.6 g/mol
O2 = 16*2 = 32 g/mol
From the given equation we can see that:
every 2 moles of KClO3 gives 3 moles of O2
when mass = moles * molar mass
∴ the mass of KClO3 = (2mol of KClO3*122.6g/mol) = 245.2 g
and the mass of O2 then = 3 mol * 32g/mol = 96 g
so, 245.2 g of KClO3 gives 96 g of O2
A) 2.72 g of KClO3:
when 245.2 KClO3 gives → 96 g O2
2.72 g KClO3 gives → X
X = 2.72 g KClO3 * 96 g O2/245.2 KClO3
= 1.06 g of O2
B) 0.361 g KClO3:
when 245.2 g KClO3 gives → 96 g O2
0.361 g KClO3 gives → X
∴ X = 0.361g KClO3 * 96 g / 245.2 g
= 0.141 g of O2
C) 83.6 Kg KClO3:
when 245.2 g KClO3 gives → 96 g O2
83.6 Kg KClO3 gives → X
∴X = 83.6 Kg* 96 g O2 /245.2 g KClO3
= 32.7 Kg of O2
D) 22.4 mg of KClO3:
when 245.2 g KClO3 gives → 96 g O2
22.4 mg KClO3 gives → X
∴X = 22.4 mg * 96 g O2 / 245.2 g KClO3
= 8.8 mg of O2
Answer:
Explanation:
Combustion reaction is given below,
C₂H₅OH(l) + 3O₂(g) ⇒ 2CO₂(g) + 3H₂O(g)
Provided that such a combustion has a normal enthalpy,
ΔH°rxn = -1270 kJ/mol
That would be 1 mol reacting to release of ethanol,
⇒ -1270 kJ of heat
Now,
0.383 Ethanol mol responds to release or unlock,
(c) Determine the final temperature of the air in the room after the combustion.
Given that :
specific heat c = 1.005 J/(g. °C)
m = 5.56 ×10⁴ g
Using the relation:
q = mcΔT
- 486.34 = 5.56 ×10⁴ × 1.005 × ΔT
ΔT= (486.34 × 1000 )/5.56×10⁴ × 1.005
ΔT= 836.88 °C
ΔT= T₂ - T₁
T₂ = ΔT + T₁
T₂ = 836.88 °C + 21.7°C
T₂ = 858.58 °C
Therefore, the final temperature of the air in the room after combustion is 858.58 °C
Answer:
I think the answer would be b, sorry if I'm wrong(EDIT: ITS ACTUALLY AAAAA)
<span>NO2 weighs 46.005 grams per mol. There are 6.02x10^23 molecules in a mol. In the given sample of 189.5 grams, there are 4.12 mols. This means that there are 2.48x10^24 molecules of NO2 in the given sample.</span>