Answer:
The equilibrium concentration of NO is 0.001335 M
Explanation:
Step 1: Data given
The equilibrium constant Kc is 0.0025 at 2127 °C
An equilibrium mixture contains 0.023M N2 and 0.031 M O2,
Step 2: The balanced equation
N2(g) + O2(g) ↔ 2NO(g)
Step 3: Concentration at the equilibrium
[N2] = 0.023 M
[O2] = 0.031 M
Kc = 0.0025 = [NO]² / [N2][O2]
Kc = 0.0025 = [NO]² / (0.023)(0.031)
[NO] = 0.001335 M
The equilibrium concentration of NO is 0.001335 M
Answer: The correct option is option d
Explanation - The mean deal with science is that it allows people to carry on research in an organized manner to find or make new discoveries and inventions.
The basic purpose of science is to try new things or ways to get an outcome by constant perseverance on research and negating the ways that don't work thus giving and improving knowledge of what is correct and what is not to make a new Discovery or invention.
Answer:
1. Yes
2.The solubility of X is 34.55g/L
Explanation:
Solubility of solute refers to how readily a solute will dissolve in a solvent at a particular temperature. Its the amount of moles or grams required to saturate 1dm
or 1 Litre of water.
From the problem, when the liquid was drained off and amount of X which didn't dissolve was measured, it weighed 0.008kg, this means out of 0.027kg, 0.027-0.008 actually dissolved
= 0.019kg*1000 = 19g.
if 19g is required to saturate 550mL at 30°C,
then
will saturate 1L
= 34.545g will saturate 1Litre
The solubility thus is 34.55g/L
Dilution of the solution can be calculated by the formula of the molarity and volume. The initial volume of 2.50 M solution was 30 mL.
<h3>What is the relationship between molar concentration and dilution?</h3>
Molar concentration or the dilution factor is in an inverse relationship and with an increase in the dilution, the molarity of the solution decreases.
Given,
Initial molarity = 2.50 M
initial volume = ?
Final molarity = 0.750 M
Final volume = 100.0 ml
Substituting values in the formula:

Therefore, 30 mL was the initial volume of the solution before it was diluted.
Learn more about dilution here:
brainly.com/question/26896011
Answer:
Mass of C₂H₄N₂ produced = 3.64 g
Explanation:
The balanced chemical equation for the reaction is given below:
3CH₄ (g) + 5CO₂ (g) + 8NH₃ (g) → 4C₂H₄N₂ (g) + 10H₂O (g)
From the equation, 3 moles of CH₄ reacts with 5 moles of CO₂ and 8 moles of NH₃ to produce 4 moles of C₂H₄N₂ and 10 moles of H₂O
Molar masses of the compounds are given below below:
CH₄ = 16 g/mol; CO₂ = 44 g/mol; NH3 = 17 g/mol; C₂H₄N₂ = 56 g/mol; H₂O g/mol
Comparing the mole ratios of the reacting masses;
CH₄ = 1.65/16 = 0.103
CO₂ = 13.5/44 = 0.307
NH₃ = 2.21/17 = 0.130
converting to whole number ratios by dividing with the smallest ratio
CH₄ = 0.103/0.103 = 1
CO₂ = 0.307/0.103 = 3
NH₃ = 0.130/0.103 = 1.3
Multiplying through with 5
CH₄ = 1 × 5 = 5
CO₂ = 3 × 5 = 15
NH₃ = 1.3 × 5 = 6.5
Therefore, the limiting reactant is NH₃
8 × 17 g (136 g) of NH₃ reacts to produce 4 × 56 g (224 g) of C₂H₄N₂
Therefore, 2.21 g of NH₃ will produce (2.21 × 224)/136 g of C₂H₄N₂ = 3.64 g of C₂H₄N₂
Mass of C₂H₄N₂ produced = 3.64 g