Well, I bet you want your answer right away! So here it is.
<span>Given <span>f (x) = 3x + 2</span> and <span>g(x) = 4 – 5x</span>, find <span>(f + g)(x), (f – g)(x), (f × g)(x)</span>, and <span>(f / g)(x)</span>.</span>
To find the answers, all I have to do is apply the operations (plus, minus, times, and divide) that they tell me to, in the order that they tell me to.
(f + g)(x) = f (x) + g(x)
= [3x + 2] + [4 – 5x]
= 3x + 2 + 4 – 5x
= 3x – 5x + 2 + 4
= –2x + 6
(f – g)(x) = f (x) – g(x)
= [3x + 2] – [4 – 5x]
= 3x + 2 – 4 + 5x
= 3x + 5x + 2 – 4
= 8x – 2
(f × g)(x) = [f (x)][g(x)]
= (3x + 2)(4 – 5x)
= 12x + 8 – 15x2 – 10x
= –15x2 + 2x + 8
<span>\left(\small{\dfrac{f}{g}}\right)(x) = \small{\dfrac{f(x)}{g(x)}}<span><span>(<span><span>g</span><span>f</span><span></span></span>)</span>(x)=<span><span><span>g(x)</span></span><span><span>f(x)</span></span><span></span></span></span></span><span>= \small{\dfrac{3x+2}{4-5x}}<span>=<span><span><span>4−5x</span></span><span><span>3x+2</span></span><span></span></span></span></span>
My answer is the neat listing of each of my results, clearly labelled as to which is which.
( f + g ) (x) = –2x + 6
( f – g ) (x) = 8x – 2
( f × g ) (x) = –15x2 + 2x + 8
<span>\mathbf{\color{purple}{ \left(\small{\dfrac{\mathit{f}}{\mathit{g}}}\right)(\mathit{x}) = \small{\dfrac{3\mathit{x} + 2}{4 - 5\mathit{x}}} }}<span><span>(<span><span>g</span><span>f</span><span></span></span>)</span>(x)=<span><span><span>4−5x</span></span><span><span>3x+2</span></span><span>
Hope I helped! :) If I did not help that's okay.
-Duolingo
</span></span></span></span>
50%
Explanation: There are 24 skittles in total, 12 of then at green. 12 is half of 24, so, it would be 50%
Answer:
Part 1) The directrix of the parabola is y=-4.25
Part 2) The focus of the parabola is F(1,-3.75)
Step-by-step explanation:
we have

This is a vertical parabola open upward
we know that
If a parabola has a vertical axis, the standard form of the equation of the parabola is

where
p≠ 0
The vertex of this parabola is at (h, k).
The focus is at (h, k + p).
The directrix is the line y = k - p.
The axis is the line x = h.
step 1
Convert the equation of the parabola in standard form





so
----> equation in standard form
The vertex is the point (1,-4)
4p=1 ------> p=1/4
step 2
Find the directrix of the parabola
The directrix is the line y = k - p
we have
k=-4
p=1/4
substitute the values
y = k - p
y=-4-(1/4)=-17/4
y=-4.25
step 3
Find the focus of the parabola
we know that
The focus is at (h, k + p).
we have
h=1
k=-4
p=1/4
substitute
F(1,-4+1/4)
F(1,-3.75)
.08
.21
.40
is the right answer