The net ionic equation of hydrobromic acid would be HBr = H+ + Br-. As we can see, the HBr compound dissociates into ions where one ion is the hydronium ion which characterizes an acid. According to Arrhenius, an acid is a compound which releases hydronium ion in solution.
Al(s) + 2AgNO3(aq) = Al(NO3)3(aq) + 3 Ag (s)
is a single replacement reaction
A single replacement reaction is a type of chemical reaction were element react with a compound and the element take place of another element in that compound. In the reaction above Aluminium (Al) take the place of silver (Ag) from it compound.that is AgNO3. single replacement reaction is possible because aluminium is in high in reactivity series as compared to silver.
Answer:
Activation energy of phenylalanine-proline peptide is 66 kJ/mol.
Explanation:
According to Arrhenius equation-
, where k is rate constant, A is pre-exponential factor,
is activation energy, R is gas constant and T is temperature in kelvin scale.
As A is identical for both peptide therefore-
![\frac{k_{ala-pro}}{k_{phe-pro}}=e^\frac{[E_{a}^{phe-pro}-E_{a}^{ala-pro}]}{RT}](https://tex.z-dn.net/?f=%5Cfrac%7Bk_%7Bala-pro%7D%7D%7Bk_%7Bphe-pro%7D%7D%3De%5E%5Cfrac%7B%5BE_%7Ba%7D%5E%7Bphe-pro%7D-E_%7Ba%7D%5E%7Bala-pro%7D%5D%7D%7BRT%7D)
Here
, T = 298 K , R = 8.314 J/(mol.K) and 
So, ![\frac{0.05}{0.005}=e^{\frac{[E_{a}^{phe-pro}-(60000J/mol)]}{8.314J.mol^{-1}.K^{-1}\times 298K}}](https://tex.z-dn.net/?f=%5Cfrac%7B0.05%7D%7B0.005%7D%3De%5E%7B%5Cfrac%7B%5BE_%7Ba%7D%5E%7Bphe-pro%7D-%2860000J%2Fmol%29%5D%7D%7B8.314J.mol%5E%7B-1%7D.K%5E%7B-1%7D%5Ctimes%20298K%7D%7D)
(rounded off to two significant digit)
So, activation energy of phenylalanine-proline peptide is 66 kJ/mol
They are called dry cells because the electrolyte is a paste.
Hope this helps!
Please give Brainliest!
Answer:
Blue Open
Explanation:
Blue Planet - Open Ocean
Teachable Moments: The open ocean is often referred to as a "marine desert." ... However, the biodiversity in the open ocean, away from the flow of nutrients from the coasts, is the lowest for all aquatic ecosystems.