Answer:
see calculations in explanation
Explanation:
percent = part/total x 100%
part = ∑ atomic mass of element
- hydrogen = 1.008 amu (atomic mass units)
- carbon = 12.011 amu
- nitrogen = 14.007 amu
total = ∑ molecular mass of compound
= H amu + C amu + Namu
= 1.008 amu + 12.011 amu + 14.007 amu
= 27.026 amu
%H = (1.008amu/27.026amu)100% = 3.730%
%C = (12.011amu/27.026amu)100% = 44.442%
%N = (14.007amu/27.026amu)100% = 51.827%
Check results ∑%values = 100%
3.730% + 44.442% + 51.827% = 99.999% ≅ 100%
Answer:
Experiment you will be able to watch a chemical reaction. In this experiment vinegar (a substance) and baking soda (a substance) will mix together. When mixed together the molecules of the two substances will re-arrange, or change, to make new substances.
Vinegar has acetic acid in it. The chemical name for baking soda is sodium bicarbonate. When you mix the two together you get sodium acetate and water. You also get carbon dioxide, which is a gas. The bag puffs up because carbon dioxide is a gas and takes up a lot of space. Eventually the bag isn't big enough to hold all that carbon dioxide gas so it explodes!
Explanation:
hope it helps ig! :\
When the block of iron is placed in water the volume of water that is displaced is 27.0 cm³
<u><em> calculation</em></u>
The volume water that is displaced is equal to volume of block of the iron
volume of block of iron = length x width x height
length= 3 cm
width = 3 cm
height = 3 cm
volume is therefore = 3 cm x 3 cm x 3 cm = 27 cm³ therefore the volume displaced = 27 cm³ since the volume of water displaced is equal to volume of block.
Answer:
Explanation:
Given parameters :
Volume of solution = 100mL
Absorbance of solution = 0.30
Unknown:
Concentration of CuSO₄ in the solution = ?
Solution:
There is relationship between the absorbance and concentration of a solution. They are directly proportional to one another.
A graph of absorbance against concentration gives a value of 0.15M at an absorbance of 0.30.
The concentration is 0.15M
Also, we can use: Beer-Lambert's law;
A = ε mC l
where εm is the molar extinction coefficient
C is the concentration
l is the path length
Since the εm is not given and assuming path length is 1;
Then we solve for the concentration.
<span>The volume of water that moves past a point on a river in a given time is called the river’s DISCHARGE or FLOW RATE. The flow rate is used to measure and study bodies of water to better understand how they work. It is useful in areas such as wastewater treatment. Water flow or velocity typically increases as the the depth or hydraulic radius of the river increases.</span>