Well, the fraction would be 80/100th's but if you wanted it simplified it would be 4/5th's. Hope I helped. :)
Answer:
1600 integers
Step-by-step explanation:
Since we have a four digit number, there are four digit placements.
For the first digit, since there can either be a 5 or an 8, we have the arrangement as ²P₁ = 2 ways.
For the second digit, we have ten numbers to choose from, so we have ¹⁰P₁ = 10.
For the third digit, since it neither be a 5 or an 8, we have two less digit from the total of ten digits which is 10 - 2 = 8. So, the number of ways of arranging that is ⁸P₁ = 8.
For the last digit, we have ten numbers to choose from, so we have ¹⁰P₁ = 10.
So, the number of integers that can be formed are 2 × 10 × 8 × 10 = 20 × 80 = 1600 integers
The area of the garden enclosed by the fencing is
A(x, y) = xy
and is constrained by its perimeter,
P = x + 2y = 200
Solve for x in the constraint equation:
x = 200 - 2y
Substitute this into the area function to get a function of one variable:
A(200 - 2y, y) = A(y) = 200y - 2y²
Differentiate A with respect to y :
dA/dy = 200 - 4y
Find the critical points of A :
200 - 4y = 0 ⇒ 4y = 200 ⇒ y = 50
Compute the second derivative of A:
d²A/dy² = -4 < 0
Since the second derivative is always negative, the critical point is a local maximum.
If y = 50, then x = 200 - 2•50 = 100. So the farmer can maximize the garden area by building a (100 ft) × (50 ft) fence.
Answer:
I think its the third one sorry if I got it wrong I tried my best