
Let's solve ~

![\qquad \sf \dashrightarrow \:[( 8 \sdot3) + (8 \sdot2i) + (5i \sdot3) + (5i \sdot2i)] -[( 4 \sdot4) + (4 \sdot - i) + (i \sdot4) + (i \sdot - i)]](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5C%3A%5B%28%208%20%5Csdot3%29%20%2B%20%288%20%5Csdot2i%29%20%2B%20%285i%20%5Csdot3%29%20%2B%20%285i%20%5Csdot2i%29%5D%20-%5B%28%204%20%5Csdot4%29%20%2B%20%284%20%5Csdot%20-%20i%29%20%2B%20%28i%20%5Csdot4%29%20%2B%20%28i%20%5Csdot%20-%20i%29%5D)
![\qquad \sf \dashrightarrow \:[24+ 16i + 15i+ 10i {}^{2} ] -[16 - 4 i+ 4i - i {}^{2} ]](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5C%3A%5B24%2B%2016i%20%2B%2015i%2B%2010i%20%7B%7D%5E%7B2%7D%20%5D%20-%5B16%20-%204%20i%2B%204i%20-%20i%20%7B%7D%5E%7B2%7D%20%5D)
![\qquad \sf \dashrightarrow \:[24+ 31i+ 10 {}{( - 1)} ] -[16 - ( - 1){}^{} ]](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5C%3A%5B24%2B%2031i%2B%2010%20%7B%7D%7B%28%20-%201%29%7D%20%5D%20-%5B16%20-%20%28%20-%201%29%7B%7D%5E%7B%7D%20%5D)
![\qquad \sf \dashrightarrow \:[24+ 31i - 10 {}{} ] -[16 + 1{}^{} ]](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5C%3A%5B24%2B%2031i%20-%2010%20%7B%7D%7B%7D%20%5D%20-%5B16%20%20%2B%201%7B%7D%5E%7B%7D%20%5D)
![\qquad \sf \dashrightarrow \:[14+ 31i {}{} ] -[17{}^{} ]](https://tex.z-dn.net/?f=%5Cqquad%20%5Csf%20%20%5Cdashrightarrow%20%5C%3A%5B14%2B%2031i%20%7B%7D%7B%7D%20%5D%20-%5B17%7B%7D%5E%7B%7D%20%5D)

I hope you understood the procedure ~
Answer:
1 - 4y
Step-by-step explanation:
0.5 - Y - 5 -0.5x = y - 5
0.5 +5 -5 -0.5x = 2y
0.5 -2y = 0.5x
x = 0.5 - 2y /0.5
= 1 - 4y
1)180= 18 tens(18*10=180)
2)1600=16 hundreds(16*100=1600)
3)6000=6 thousands(6*1000=6000)
4)2700=27 hundreds(27*100=2700)
Hope this helps:)
This equation is separable,

Integrate both sides and solve for
:




Solve for
using the initial value.

Then the particular solution is

First, find the scale factor.
8.4 / 7 = 1.2
9 / 7.5 = 1.2
7.2 / 6 = 1.2
Since both solids are different sizes, the solids aren't congruent.
The size ratio for all the sides are:
8.4:7
9:7.5
7.2:6
Since the scale factor isn't 1:1 this also proves that the solids are NOT congruent.
Since both solids are the same kind of shape and have an identical scale factor, the solids are similar.
Best of Luck!