Sin θ=sqrt(1-<span>cos^2 θ)
</span>sin θ=sqrt[1-(5/13)^2]
sin θ=sqrt[1-(5)^2/(13)^2]
sin θ=sqrt[1-25/169]
sin θ=sqrt[(169-25)/169]
sin θ=sqrt(144/169)
sin θ=sqrt(144)/sqrt(169)
sin θ=12/13
Answer: Second option 12/13
\begin{gathered}\{\begin{array}{ccc}3x+5y=2&|\cdot(-3)\\9x+11y=14\end{array}\\\underline{+\{\begin{array}{ccc}-9x-15y=-6\\9x+11y=14\end{array}}\ \ |\text{add both sides of equations}\\.\ \ \ \ \ -4y=8\ \ \ |:(=4)\\.\ \ \ \ \ y=-2\\\\\text{substitute the value of y to the first equation}\\\\3x+5\cdot(-2)=2\\3x-10=2\ \ \ |+10\\3x=12\ \ \ |:3\\x=4\\\\Answer:\ x=4;\ y=-2\to(4;\ -2)\end{gathered}
{
3x+5y=2
9x+11y=14
∣⋅(−3)
−9x−15y=−6
9x+11y=14
add both sides of equations
. −4y=8 ∣:(=4)
. y=−2
substitute the value of y to the first equation
3x+5⋅(−2)=2
3x−10=2 ∣+10
3x=12 ∣:3
x=4
Answer: x=4; y=−2→(4; −2)
9514 1404 393
Answer:
(d) reflection about the x-axis, up 6 units
Step-by-step explanation:
The parent function y=1/x is multiplied by -1, which reflects it over the x-axis. Then 6 is added, which shifts it up 6 units.
The transformations are ...
reflection about the x-axis, up 6 units
9 is the answer negatives cancel out creating positve
Answer:
I think its b
Step-by-step explanation: