Answer:
0033
Step-by-step explanation:
.033 of a whole number so its .033
we are given
![g(x)=(0.5)^x+4](https://tex.z-dn.net/?f=%20g%28x%29%3D%280.5%29%5Ex%2B4%20)
we can see that
there is no value of x for which g(x) is not defined
so, no vertical asymptote exists
now, we will find horizontal asymptote
![\lim_{x \to \infty} g(x)= \lim_{x \to \infty}((0.5)^x+4 )](https://tex.z-dn.net/?f=%20%20%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20g%28x%29%3D%20%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%28%280.5%29%5Ex%2B4%20%29%20)
![\lim_{x \to \infty} g(x)= (\lim_{x \to \infty} (0.5)^x+\lim_{x \to \infty} 4 )](https://tex.z-dn.net/?f=%20%20%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20g%28x%29%3D%20%28%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%280.5%29%5Ex%2B%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%204%20%29%20)
![\lim_{x \to \infty} g(x)= 0+4](https://tex.z-dn.net/?f=%20%20%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20g%28x%29%3D%200%2B4%20)
so, we get
horizontal asymptote as
............Answer